Are you Qiujuan Liang?

Claim your profile

Publications (2)4.79 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: The heat shock transcription factor (HSF) is an important transactivator of the heat shock genes. Recent studies have shown that HSF1 acts as a repressor of non-heat shock genes to protect against endotoxemia. In this study, we found that heat shock treatment and HSF1 over-expression augmented the induction of interleukin (IL)-10 mRNA. Computational analysis of the mouse IL-10 promoter region showed that three potential heat shock elements (HSEs) were located at mouse IL-10 gene promoter, among which only the -387/-360 probe formed a complex with HSF1. The lack of binding of the other two HSEs to HSF1 suggested the critical role of the flanking sequences in the binding specificity of HSE to HSF1. Moreover, we showed that HSF1 overexpression transactivated mouse IL-10 gene promoter and this transcriptional activation was inhibited by the mutation of HSE in the -387/-360 region of IL-10 gene promoter using luciferase reporter assay. These findings indicate that HSF1 is a transcriptional activator of anti-inflammatory mediator IL-10 gene in RAW264.7 macrophages.
    Inflammation 05/2012; 35(4):1558-66. · 2.46 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Heat shock factor 1 (HSF1) is the major heat shock transcription factor and plays an essential role in mediating the cellular response to physiological and environmental stress. We found that LPS-induced expression of the granulocyte-colony stimulating factor (G-CSF) gene was upregulated in HSF1 knock-out (HSF1(-/-)) mice using a gene array. In order to determine whether and how HSF1 regulates the induced expression of G-CSF, mRNA, and protein levels of G-CSF were detected by Northern blotting and ELISA, the promoter of G-CSF was analyzed with an online transcription element search system and the transcriptional activity of the G-CSF promoter was analyzed by EMSA and a reporter gene assay. The results showed that transcription and protein secretion of G-CSF induced by LPS are both inhibited by HSF1. Three high affinity binding sites for NF-IL6/CCAAT enhancer binding protein beta, but no heat shock element, were identified in the core promoter of G-CSF. The DNA-binding capability of NF-IL6 to the G-CSF promoter was reinforced by LPS but not influenced by heat shock or HSF1. However, HSF1 was observed to bind to the binding sites of NF-IL6 in the G-CSF promoter. The transcriptional activity of the G-CSF promoter was enhanced by LPS or NF-IL6 and inhibited by HSF1 in a dose dependent manner. We conclude that HSF1 regulates expression of G-CSF through binding to the NF-IL6-binding element.
    Molecular and Cellular Biochemistry 04/2011; 352(1-2):11-7. · 2.33 Impact Factor