Nurit Katzir

Ben-Gurion University of the Negev, Be'er Sheva`, Southern District, Israel

Are you Nurit Katzir?

Claim your profile

Publications (60)171.54 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Cucurbitacins are a group of bitter tasting oxygenated tetracyclic triterpenes that are produced in the Cucurbitaceae and other plant families. The natural roles of cucurbitacins in plants are probably related to defense against pathogens and pests. Cucurbitadienol, a triterpene synthesized from oxidosqualene, is the first committed precursor to cucurbitacins produced by a specialized oxidosqualene cyclase termed cucurbitadienol synthase. We explored cucurbitacin accumulation in watermelon in relation to bitterness. Our findings show that cucurbitacins are accumulated in bitter tasting watermelon Citrullus lanatus var. citroides as well as in their wild ancestor C. colocynthis, but not in non-bitter commercial cultivars of sweet watermelon (C. lanatus var. lanatus). Molecular analysis of genes expressed in roots of several watermelon accessions led to the isolation of three sequences (CcCDS1, CcCDS2 and ClCDS1) all displaying high similarity to the pumpkin CpCPQ, encoding a protein previously shown to possess cucurbitadienol synthase activity. We utilized the Saccharomyces cerevisiae strain BY4743, heterozygous for lanosterol synthase to probe for possible encoded cucurbitadienol synthase activity of the expressed watermelon sequences. Functional expression of the two sequences isolated from C. colocynthis (CcCDS1 and CcCDS2) in yeast revealed that only CcCDS2 possessed cucurbitadienol synthase activity while CcCDS1, did not display cucurbitadienol synthase activity in recombinant yeast. ClCDS1, isolated from C. lanatus var. lanatus is almost identical to CcCDS1. Our results imply that CcCDS2 plays a role in imparting bitterness to watermelon. Yeast has been an excellent diagnostic tool to determine the first committed step of cucurbitacin biosynthesis in watermelon. This article is protected by copyright. All rights reserved.
    Yeast 10/2014; · 1.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Taste has been the subject of human selection in the evolution of agricultural crops, and acidity is one of the three major components of fleshy fruit taste, together with sugars and volatile flavour compounds. We identify a family of plant-specific genes with a major effect on fruit acidity by map-based cloning of C. melo PH gene (CmPH) from melon, Cucumis melo taking advantage of the novel natural genetic variation for both high and low fruit acidity in this species. Functional silencing of orthologous PH genes in two distantly related plant families, cucumber and tomato, produced low-acid, bland tasting fruit, showing that PH genes control fruit acidity across plant families. A four amino-acid duplication in CmPH distinguishes between primitive acidic varieties and modern dessert melons. This fortuitous mutation served as a preadaptive antecedent to the development of sweet melon cultigens in Central Asia over 1,000 years ago.
    Nature Communications 01/2014; 5:4026. · 10.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In order to broaden the available genetic variation of melon, we developed an ethyl methanesulfonate mutation library in an orange-flesh 'Charentais' type melon line that accumulates β-carotene. One mutagenized M2 family segregated for a novel recessive trait, a yellow-orange fruit flesh ('yofI'(. HPLC analysis revealed that 'yofI accumulates pro-lycopene (tetra-cis-lycopene) as its major fruit pigment. The altered carotenoid composition of 'yofI' is associated with a significant change of the fruit aroma since cleavage of β-carotene yields different apocarotenoids than the cleavage of pro-lycopene. Normally, pro-lycopene is further isomerized by CRTISO (carotenoid isomerase) to yield all-trans-lycopene, which is further cyclized to β-carotene in melon fruit. Cloning and sequencing of 'yofI' CRTISO identified two mRNA sequences which lead to truncated forms of CRTISO. Sequencing of the genomic CRTISO identified an A to T transversion in 'yofI' which leads to a premature STOP codon. The early carotenoid pathway genes were up regulated in yofI fruit causing accumulation of other intermediates such as phytoene and ζ-carotene. Total carotenoid levels are only slightly increased in the mutant. Mutants accumulating pro-lycopene have been reported in both tomato and watermelon fruits, however, this is the first report of a non-lycopene accumulating fruit showing this phenomenon.
    Archives of Biochemistry and Biophysics 08/2013; · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Success in grafting depends on the identification of a compatible rootstock (RS) that promotes rapid formation of vascular connections between the RS and the scion, and rapid resumption of root and shoot growth. In this study, we used compatible and incompatible Cucurbita rootstocks, with a melon (Cucumis melo L. 'Arava') scion, to identify physiological and biochemical factors in the scion-RS interface that could be associated with graft compatibility. Anatomical characterisation of the grafting interface showed that the regeneration and differentiation of vascular elements was similar, at first, in both compatible and incompatible grafted seedlings although, in the latter, a protective layer was formed, but did not interfere with communication between the RS and the scion. Water uptake and sugar distribution between the plant canopy and the roots, measured 14 d after grafting (DAG) were not correlated with compatibility or incompatibility. At 24 DAG, both water uptake and root sugar concentrations decreased significantly in the incompatible RS, reflecting deterioration of the RS. At 24 DAG, part of the RS collapsed, but only in incompatible grafted seedlings. Histochemical staining revealed that superoxide, H 2 O 2 , peroxidase (POX) activity, and lignin deposits at the scion-rootstock interface were similar in both compatible and incompatible grafting combinations at 14 DAG; but, at 24 DAG, H 2 O 2 and superoxide levels were higher in the incompatible grafted transplants. In addition, cell-wall POX and superoxide dismutase (SOD) activities were lower in the incompatible RS-scion interface at 14 and 24 DAG. These results suggest that a physical barrier is unlikely to be formed between the incompatible partners early after grafting, but that lower anti-oxidant enzyme activities and higher levels of reactive oxygen species (ROS) in the incompatible RS-scion interface may be responsible for degradation of the grafting zone.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sulfur containing aroma volatiles are important contributors to the distinctive aroma of melon and other fruits. Melon cultivars and accessions differ in the content of sulfur-containing and other volatiles. L-Methionine has been postulated to serve as a precursor of these volatiles. Incubation of melon fruit cubes with (13) C- and (2) H- labeled L-methionine revealed two distinct catabolic routes into volatiles: one apparently involving the action of an L-methionine aminotransferase and preserving the main carbon skeleton of L-methionine. The second route apparently involves the action of an L-methionine-γ-lyase activity, releasing methanethiol, a backbone for the formation of thiol-derived aroma volatiles. Exogenous L-methionine also generated non-sulfur volatiles by further metabolism of α-ketobutyrate, a product of L-methionine-γ-lyase activity. α-Ketobutyrate was further metabolized into L-isoleucine and to other important melon volatiles including non-sulfur branched and straight-chain esters. Cell-free extracts derived from ripe melon fruit exhibited L-methionine-γ-lyase enzymatic activity. A melon gene (CmMGL), ectopically expressed in E. coli was shown to encode a protein possessing L-methionine-γ-lyase enzymatic activity. The expression of CmMGL was relatively low in early stages of melon fruit development, but increased in the flesh of ripe fruits depending on the cultivar tested. Moreover, the levels of expression of CmMGL in recombinant inbred lines co-segregated with the levels of the S-volatiles enriched with +1 m/z unit and postulated to be produced via this route. Our results indicate that L-methionine is a precursor of both sulfur and non-sulfur aroma volatiles in melon fruit. © 2013 The Authors. The Plant Journal © 2013 Blackwell Publishing Ltd.
    The Plant Journal 02/2013; · 6.58 Impact Factor
  • Source
    Molecular Plant 10/2012; · 6.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The availability of sequence information for many plants has opened the way to advanced genetic analysis in many non-model plants. Nevertheless, exploration of genetic variation on a large scale and its use as a tool for the identification of traits of interest are still rare. In this study, we combined a bulk segregation approach with our own-designed microarrays to map the pH locus that influences fruit pH in melon. Using these technologies, we identified a set of markers that are genetically linked to the pH trait. Further analysis using a set of melon cultivars demonstrated that some of these markers are tightly linked to the pH trait throughout our germplasm collection. These results validate the utility of combining microarray technology with a bulk segregation approach in mapping traits of interest in non-model plants.
    Theoretical and Applied Genetics 10/2012; · 3.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sweet melon cultivars contain a low level of organic acids and, therefore, the quality and flavor of sweet melon fruit is determined almost exclusively by fruit sugar content. However, genetic variability for fruit acid levels in the Cucumis melo species exists and sour fruit accessions are characterized by acidic fruit pH of <5, compared to the sweet cultivars that are generally characterized by mature fruit pH values of >6. In this paper, we report results from a mapping population based on recombinant inbred lines (RILs) derived from the cross between the non-sour 'Dulce' variety and the sour PI 414323 accession. Results show that a single major QTL for pH co-localizes with major QTLs for the two predominant organic acids in melon fruit, citric and malic, together with an additional metabolite which we identified as uridine. While the acidic recombinants were characterized by higher citric and malic acid levels, the non-acidic recombinants had a higher uridine content than did the acidic recombinants. Additional minor QTLs for pH, citric acid and malic acid were also identified and for these the increased acidity was unexpectedly contributed by the non-sour parent. To test for co-localization of these QTLs with genes encoding organic acid metabolism and transport, we mapped the genes encoding structural enzymes and proteins involved in organic acid metabolism, transport and vacuolar H+ pumps. None of these genes co-localized with the major pH QTL, indicating that the gene determining melon fruit pH is not one of the candidate genes encoding this primary metabolic pathway. Linked markers were tested in two additional inter-varietal populations and shown to be linked to the pH trait. The presence of the same QTL in such diverse segregating populations suggests that the trait is determined throughout the species by variability in the same gene and is indicative of a major role of the evolution of this gene in determining the important domestication trait of fruit acidity within the species.
    Theoretical and Applied Genetics 03/2012; 125(2):343-53. · 3.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacteria in the genus Rickettsia, best known as vertebrate pathogens vectored by blood-feeding arthropods, can also be found in phytophagous insects. The presence of closely related bacterial symbionts in evolutionarily distant arthropod hosts presupposes a means of horizontal transmission, but no mechanism for this transmission has been described. Using a combination of experiments with live insects, molecular analyses and microscopy, we found that Rickettsia were transferred from an insect host (the whitefly Bemisia tabaci) to a plant, moved inside the phloem, and could be acquired by other whiteflies. In one experiment, Rickettsia was transferred from the whitefly host to leaves of cotton, basil and black nightshade, where the bacteria were restricted to the phloem cells of the plant. In another experiment, Rickettsia-free adult whiteflies, physically segregated but sharing a cotton leaf with Rickettsia-plus individuals, acquired the Rickettsia at a high rate. Plants can serve as a reservoir for horizontal transmission of Rickettsia, a mechanism which may explain the occurrence of phylogenetically similar symbionts among unrelated phytophagous insect species. This plant-mediated transmission route may also exist in other insect-symbiont systems and, since symbionts may play a critical role in the ecology and evolution of their hosts, serve as an immediate and powerful tool for accelerated evolution.
    Proceedings of the Royal Society B: Biological Sciences 11/2011; 279(1734):1791-6. · 5.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A number of molecular marker linkage maps have been developed for melon (Cucumis melo L.) over the last two decades. However, these maps were constructed using different marker sets, thus, making comparative analysis among maps difficult. In order to solve this problem, a consensus genetic map in melon was constructed using primarily highly transferable anchor markers that have broad potential use for mapping, synteny, and comparative quantitative trait loci (QTL) analysis, increasing breeding effectiveness and efficiency via marker-assisted selection (MAS). Under the framework of the International Cucurbit Genomics Initiative (ICuGI, http://www.icugi.org), an integrated genetic map has been constructed by merging data from eight independent mapping experiments using a genetically diverse array of parental lines. The consensus map spans 1150 cM across the 12 melon linkage groups and is composed of 1592 markers (640 SSRs, 330 SNPs, 252 AFLPs, 239 RFLPs, 89 RAPDs, 15 IMAs, 16 indels and 11 morphological traits) with a mean marker density of 0.72 cM/marker. One hundred and ninety-six of these markers (157 SSRs, 32 SNPs, 6 indels and 1 RAPD) were newly developed, mapped or provided by industry representatives as released markers, including 27 SNPs and 5 indels from genes involved in the organic acid metabolism and transport, and 58 EST-SSRs. Additionally, 85 of 822 SSR markers contributed by Syngenta Seeds were included in the integrated map. In addition, 370 QTL controlling 62 traits from 18 previously reported mapping experiments using genetically diverse parental genotypes were also integrated into the consensus map. Some QTL associated with economically important traits detected in separate studies mapped to similar genomic positions. For example, independently identified QTL controlling fruit shape were mapped on similar genomic positions, suggesting that such QTL are possibly responsible for the phenotypic variability observed for this trait in a broad array of melon germplasm. Even though relatively unsaturated genetic maps in a diverse set of melon market types have been published, the integrated saturated map presented herein should be considered the initial reference map for melon. Most of the mapped markers contained in the reference map are polymorphic in diverse collection of germplasm, and thus are potentially transferrable to a broad array of genetic experimentation (e.g., integration of physical and genetic maps, colinearity analysis, map-based gene cloning, epistasis dissection, and marker-assisted selection).
    BMC Plant Biology 07/2011; 11:111. · 4.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The sweet melon fruit is characterized by a metabolic transition during its development that leads to extensive accumulation of the disaccharide sucrose in the mature fruit. While the biochemistry of the sugar metabolism pathway of the cucurbits has been well studied, a comprehensive analysis of the pathway at the transcriptional level allows for a global genomic view of sugar metabolism during fruit sink development. We identified 42 genes encoding the enzymatic reactions of the sugar metabolism pathway in melon. The expression pattern of the 42 genes during fruit development of the sweet melon cv Dulce was determined from a deep sequencing analysis performed by 454 pyrosequencing technology, comprising over 350,000 transcripts from four stages of developing melon fruit flesh, allowing for digital expression of the complete metabolic pathway. The results shed light on the transcriptional control of sugar metabolism in the developing sweet melon fruit, particularly the metabolic transition to sucrose accumulation, and point to a concerted metabolic transition that occurs during fruit development.
    Plant Molecular Biology 03/2011; 76(1-2):1-18. · 3.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Melon (Cucumis melo), an economically important vegetable crop, belongs to the Cucurbitaceae family which includes several other important crops such as watermelon, cucumber, and pumpkin. It has served as a model system for sex determination and vascular biology studies. However, genomic resources currently available for melon are limited. We constructed eleven full-length enriched and four standard cDNA libraries from fruits, flowers, leaves, roots, cotyledons, and calluses of four different melon genotypes, and generated 71,577 and 22,179 ESTs from full-length enriched and standard cDNA libraries, respectively. These ESTs, together with ~35,000 ESTs available in public domains, were assembled into 24,444 unigenes, which were extensively annotated by comparing their sequences to different protein and functional domain databases, assigning them Gene Ontology (GO) terms, and mapping them onto metabolic pathways. Comparative analysis of melon unigenes and other plant genomes revealed that 75% to 85% of melon unigenes had homologs in other dicot plants, while approximately 70% had homologs in monocot plants. The analysis also identified 6,972 gene families that were conserved across dicot and monocot plants, and 181, 1,192, and 220 gene families specific to fleshy fruit-bearing plants, the Cucurbitaceae family, and melon, respectively. Digital expression analysis identified a total of 175 tissue-specific genes, which provides a valuable gene sequence resource for future genomics and functional studies. Furthermore, we identified 4,068 simple sequence repeats (SSRs) and 3,073 single nucleotide polymorphisms (SNPs) in the melon EST collection. Finally, we obtained a total of 1,382 melon full-length transcripts through the analysis of full-length enriched cDNA clones that were sequenced from both ends. Analysis of these full-length transcripts indicated that sizes of melon 5' and 3' UTRs were similar to those of tomato, but longer than many other dicot plants. Codon usages of melon full-length transcripts were largely similar to those of Arabidopsis coding sequences. The collection of melon ESTs generated from full-length enriched and standard cDNA libraries is expected to play significant roles in annotating the melon genome. The ESTs and associated analysis results will be useful resources for gene discovery, functional analysis, marker-assisted breeding of melon and closely related species, comparative genomic studies and for gaining insights into gene expression patterns.
    BMC Genomics 01/2011; 12:252. · 4.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: External color has profound effects on acceptability of agricultural products by consumers. Carotenoids and chlorophylls are known to be the major pigments of melon (Cucumis melo L.) rinds. Flavonoids (especially chalcones and anthocyanins) are also prominent in other fruits but have not been reported to occur in melons fruit. We analyzed the pigments accumulating in rinds of different melon genotypes during fruit development. We found that melon rind color is based on different combinations of chlorophyll, carotenoids, and flavonoids according to the cultivar tested and their ratios changed during fruit maturation. Moreover, in "canary yellow" type melons, naringenin chalcone, a yellow flavonoid pigment previously unknown to occur in melons, has been identified as the major fruit colorant in mature rinds. Naringenin chalcone is also prominent in other melon types, occurring together with carotenoids (mainly β-carotene) and chlorophyll. Both chlorophyll and carotenoid pigments segregate jointly in an F(2) population originating from a cross between a yellow canary line and a line with green rind. In contrast, the content of naringenin chalcone segregates as a monogenic trait independently to carotenoids and chlorophyll. Transcription patterns of key structural phenylpropanoid and flavonoid biosynthetic pathway genes were monitored in attempts to explain naringenin chalcone accumulation in melon rinds. The transcript levels of CHI were low in both parental lines, but C4H, C4L, and CHS transcripts were upregulated in "Noy Amid", the parental line that accumulates naringenin chalcone. Our results indicate that naringenin chalcone accumulates independently from carotenoids and chlorophyll pigments in melon rinds and gives an insight into the molecular mechanism for the accumulation of naringenin chalcone in melon rinds.
    Journal of Agricultural and Food Chemistry 10/2010; 58(19):10722-8. · 3.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A genetic map of melon enriched for fruit traits was constructed, using a recombinant inbred (RI) population developed from a cross between representatives of the two subspecies of Cucumis melo L.: PI 414723 (subspecies agrestis) and 'Dulce' (subspecies melo). Phenotyping of 99 RI lines was conducted over three seasons in two locations in Israel and the US. The map includes 668 DNA markers (386 SSRs, 76 SNPs, six INDELs and 200 AFLPs), of which 160 were newly developed from fruit ESTs. These ESTs include candidate genes encoding for enzymes of sugar and carotenoid metabolic pathways that were cloned from melon cDNA or identified through mining of the International Cucurbit Genomics Initiative database (http://www.icugi.org/). The map covers 1,222 cM with an average of 2.672 cM between markers. In addition, a skeleton physical map was initiated and 29 melon BACs harboring fruit ESTs were localized to the 12 linkage groups of the map. Altogether, 44 fruit QTLs were identified: 25 confirming QTLs described using other populations and 19 newly described QTLs. The map includes QTLs for fruit sugar content, particularly sucrose, the major sugar affecting sweetness in melon fruit. Six QTLs interacting in an additive manner account for nearly all the difference in sugar content between the two genotypes. Three QTLs for fruit flesh color and carotenoid content were identified. Interestingly, no clear colocalization of QTLs for either sugar or carotenoid content was observed with over 40 genes encoding for enzymes involved in their metabolism. The RI population described here provides a useful resource for further genomics and metabolomics studies in melon, as well as useful markers for breeding for fruit quality.
    Theoretical and Applied Genetics 08/2010; 121(3):511-33. · 3.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The unique aroma of melons (Cucumis melo L., Cucurbitaceae) is composed of many volatile compounds biosynthetically derived from fatty acids, carotenoids, amino acids, and terpenes. Although amino acids are known precursors of aroma compounds in the plant kingdom, the initial steps in the catabolism of amino acids into aroma volatiles have received little attention. Incubation of melon fruit cubes with amino acids and alpha-keto acids led to the enhanced formation of aroma compounds bearing the side chain of the exogenous amino or keto acid supplied. Moreover, L-[(13)C(6)]phenylalanine was also incorporated into aromatic volatile compounds. Amino acid transaminase activities extracted from the flesh of mature melon fruits converted L-isoleucine, L-leucine, L-valine, L-methionine, or L-phenylalanine into their respective alpha-keto acids, utilizing alpha-ketoglutarate as the amine acceptor. Two novel genes were isolated and characterized (CmArAT1 and CmBCAT1) encoding 45.6 kDa and 42.7 kDa proteins, respectively, that displayed aromatic and branched-chain amino acid transaminase activities, respectively, when expressed in Escherichia coli. The expression of CmBCAT1 and CmArAT1 was low in vegetative tissues, but increased in flesh and rind tissues during fruit ripening. In addition, ripe fruits of climacteric aromatic cultivars generally showed high expression of CmBCAT1 and CmArAT1 in contrast to non-climacteric non-aromatic fruits. The results presented here indicate that in melon fruit tissues, the catabolism of amino acids into aroma volatiles can initiate through a transamination mechanism, rather than decarboxylation or direct aldehyde synthesis, as has been demonstrated in other plants.
    Journal of Experimental Botany 02/2010; 61(4):1111-23. · 5.79 Impact Factor
  • Horticultural Reviews, Volume 36, 01/2010: pages 165 - 198; , ISBN: 9780470527238
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic maps constitute the basis of breeding programs for many agricultural organisms. The creation of these maps is dependent on marker discovery. Melon, among other crops, is still lagging in genomic resources, limiting the ability to discover new markers in a high-throughput fashion. One of the methods used to search for molecular markers is DNA hybridization to microarrays. Microarray hybridization of DNA from different accessions can reveal differences between them--single-feature polymorphisms (SFPs). These SFPs can be used as markers for breeding purposes, or they can be converted to conventional markers by sequencing. This method has been utilized in a few different plants to discover genetic variation, using Affymetrix arrays that exist for only a few organisms. We applied this approach with some modifications for marker discovery in melon. Using a custom-designed oligonucleotide microarray based on a partial EST collection of melon, we discovered 6184 putative SFPs between the parents of our mapping population. Validation by sequencing of 245 SFPs from the two parents showed a sensitivity of around 79%. Most SFPs (81%) contained single-nucleotide polymorphisms. Testing the SFPs on another mapping population of melon confirmed that many of them are conserved. Thousands of new SFPs that can be used for genetic mapping and molecular-assisted breeding in melon were discovered using a custom-designed oligo microarray. A portion of these SFPs are conserved and can be used in different breeding populations. Although improvement of the discovery rate is still needed, this approach is applicable to many agricultural systems with limited genomic resources.
    BMC Genomics 01/2010; 11:269. · 4.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A combined chemical, biochemical and molecular study was conducted to understand the differential accumulation of volatile sesquiterpenes in melon fruits. Sesquiterpenes were present mainly in the rinds of climacteric varieties, and a great diversity in their composition was found among varieties. Sesquiterpenes were generally absent in non-climacteric varieties. Two climacteric melon varieties, the green-fleshed 'Noy Yizre'el', and the orange-fleshed 'Dulce' were further examined. In 'Noy Yizre'el' the main sesquiterpenes accumulated are delta-cadinene, gamma-cadinene and alpha-copaene, while alpha-farnesene is the main sesquiterpene in 'Dulce'. Sesquiterpene synthase activities, mainly restricted to rinds of mature fruits, were shown to generate different sesquiterpenes in each variety according to the compositions found in rinds. EST melon database mining yielded two novel cDNAs coding for members of the Tps gene family termed CmTpsNY and CmTpsDul respectively, that are 43.2% similar. Heterologous expression in E. coli of CmTpsNY produced mainly delta-copaene, alpha-copaene, beta-caryophyllene, germacrene D, alpha-muurolene, gamma-cadinene, delta-cadinene, and alpha-cadinene, while CmTpsDul produced alpha-farnesene only. CmTpsNY was mostly expressed in 'Noy Yizre'el' rind while CmTpsDul expression was specific to 'Dulce' rind. None of these genes was expressed in rinds of the non-climacteric 'Tam Dew' cultivar. Our results indicate that different sesquiterpene synthases encoded by different members of the Tps gene family are active in melon varieties and this specificity modulates the accumulation of sesquiterpenes. The genes are differentially transcriptionally regulated during fruit development and according to variety and are likely to be associated with chemical differences responsible for the unique aromas of melon varieties.
    Plant Molecular Biology 05/2008; 66(6):647-61. · 3.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cultivated watermelon form large fruits that are highly variable in size, shape, color, and content, yet have extremely narrow genetic diversity. Whereas a plethora of genes involved in cell wall metabolism, ethylene biosynthesis, fruit softening, and secondary metabolism during fruit development and ripening have been identified in other plant species, little is known of the genes involved in these processes in watermelon. A microarray and quantitative Real-Time PCR-based study was conducted in watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] in order to elucidate the flow of events associated with fruit development and ripening in this species. RNA from three different maturation stages of watermelon fruits, as well as leaf, were collected from field grown plants during three consecutive years, and analyzed for gene expression using high-density photolithography microarrays and quantitative PCR. High-density photolithography arrays, composed of probes of 832 EST-unigenes from a subtracted, fruit development, cDNA library of watermelon were utilized to examine gene expression at three distinct time-points in watermelon fruit development. Analysis was performed with field-grown fruits over three consecutive growing seasons. Microarray analysis identified three hundred and thirty-five unique ESTs that are differentially regulated by at least two-fold in watermelon fruits during the early, ripening, or mature stage when compared to leaf. Of the 335 ESTs identified, 211 share significant homology with known gene products and 96 had no significant matches with any database accession. Of the modulated watermelon ESTs related to annotated genes, a significant number were found to be associated with or involved in the vascular system, carotenoid biosynthesis, transcriptional regulation, pathogen and stress response, and ethylene biosynthesis. Ethylene bioassays, performed with a closely related watermelon genotype with a similar phenotype, i.e. seeded, bright red flesh, dark green rind, etc., determined that ethylene levels were highest during the green fruit stage followed by a decrease during the white and pink fruit stages. Additionally, quantitative Real-Time PCR was used to validate modulation of 127 ESTs that were differentially expressed in developing and ripening fruits based on array analysis. This study identified numerous ESTs with putative involvement in the watermelon fruit developmental and ripening process, in particular the involvement of the vascular system and ethylene. The production of ethylene during fruit development in watermelon gives further support to the role of ethylene in fruit development in non-climacteric fruits.
    BMC Genomics 02/2008; 9:275. · 4.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The bacterial symbiont Cardinium (Bacteroidetes) was previously implicated in the thelytokous reproduction of the parasitoid Plagiomerus diaspidis Crawford (Hymenoptera: Encyrtidae). Horizontal transmission of the symbiont among the cactus scale Diaspis echinocacti Bouché (Homoptera: Diaspididae) and its hymenopteran parasitoids has been suggested. In this study, the bacteria associated with D. echinocacti, its parasitoids P. diaspidis and Aphytis sp. (Hymenoptera: Aphelinidae), and the hyperparasitoid Marietta leopardina Motschulsky (Hymenoptera: Aphelinidae) were characterized using molecular fingerprinting techniques, and the localization of Cardinium in P. diaspidis was studied using fluorescence in situ hybridizations (FISH). Cardinium was the only bacterium found in P. diaspidis, but it could not be detected in any of the other insects tested. The symbiont was specifically located in the reproductive tissues of its P. diaspidis host.
    Journal of Invertebrate Pathology 11/2007; 96(2):106-8. · 2.67 Impact Factor