Nobutaka Hanagata

Hokkaido University, Sapporo, Hokkaidō, Japan

Are you Nobutaka Hanagata?

Claim your profile

Publications (147)529.42 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, the interaction of 5-Fluorouracil with herring sperm DNA is reported using spectroscopic and molecular modeling techniques. This binding study of 5-FU with hs-DNA is of paramount importance in understanding chemico-biological interactions for drug design, pharmacy and biochemistry without altering the original structure. The challenge of the study was to find the exact binding mode of the drug 5-Fluorouracil with hs-DNA. From the absorption studies, a hyperchromic effect was observed for the herring sperm DNA in the presence of 5-Fluorouracil and a binding constant of 6.153 × 103M-1 for 5-Fluorouracil reveals the existence of weak interaction between the 5-Fluorouracil and herring sperm DNA. Ethidium bromide loaded herring sperm DNA showed a quenching in the fluorescence intensity after the addition of 5-Fluorouracil. The binding constants for 5-Fluorouracil stranded DNA and competitive bindings of 5-FU interacting with DNA-EB systems were examined by fluorescence spectra. The Stern-Volmer plots and fluorescence lifetime results confirm the static quenching nature of the drug-DNA complex. The binding constant Kb was 2.5 × 104 L mol-1 and the number of binding sites are 1.17. The 5-FU on DNA system was calculated using double logarithmic plot. From the Forster nonradiative energy transfer study it has been found that the distance of 5-FU from DNA was 4.24 nm. In addition to the spectroscopic results, the molecular modeling studies also revealed the major groove binding as well as the partial intercalation mode of binding between the 5-Fluorouracil and herring sperm DNA. The binding energy and major groove binding as -6.04 kcal mol-1 and -6.31 kcal mol-1 were calculated from the modeling studies. All the testimonies manifested that binding modes between 5-Fluouracil and DNA were evidenced to be groove binding and in partial intercalative mode.
    Biophysical Reviews and Letters 07/2015; 10(2):115-133. DOI:10.1142/S1793048015500034
  • [Show abstract] [Hide abstract]
    ABSTRACT: A versatile method for the rapid fabrication of aligned fullerene C60 nanowhiskers (C60NWs) at the air-water interface is presented. This method is based on the vortex motion of a sub-phase (water), which directs floating C60 nanowhiskers (C60NWs) to align on the water surface according to the direction of rotational flow. Aligned C60NWs could be transferred onto many different flat substrates and, in this case, aligned C60NWs on glass substrates were employed as a scaffold for cell culture. Bone forming human osteoblast MG63 cells adhered well to the C60NWs and their growth was found to be oriented with the axis of the aligned C60NWs. Cells grown on aligned C60NWs were more highly oriented with the axis of alignment than when grown on randomly oriented nanowhiskers. A study of cell proliferation on the C60NWs implied their non-toxicity indicating their potential for use in biomedical applications.
    ACS Applied Materials & Interfaces 06/2015; 7(28). DOI:10.1021/acsami.5b04811 · 6.72 Impact Factor
  • Nobutaka Hanagata
    [Show abstract] [Hide abstract]
    ABSTRACT: Interferon-induced transmembrane protein 5 (IFITM5) is an osteoblast-specific membrane protein that has been shown to be a positive regulatory factor for mineralization in vitro. However, Ifitm5 knockout mice do not exhibit serious bone abnormalities, and thus the function of IFITM5 in vivo remains unclear. Recently, a single point mutation (c.-14C>T) in the 5′ untranslated region of IFITM5 was identified in patients with osteogenesis imperfecta type V (OI-V). Furthermore, a single point mutation (c.119C>T) in the coding region of IFITM5 was identified in OI patients with more severe symptoms than patients with OI-V. Although IFITM5 is not directly involved in the formation of bone in vivo, the reason why IFITM5 mutations cause OI remains a major mystery. In this review, the current state of knowledge of OI pathological mechanisms due to IFITM5 mutations will be reviewed.
    Journal of Bone and Mineral Metabolism 06/2015; DOI:10.1007/s00774-015-0667-1 · 2.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Extrahepatic cholangiocarcinoma is very difficult to diagnose at an early stage, and has a poor prognosis. Novel markers for diagnosis and optimal treatment selection are needed. However, there has been very limited data on the proteome profile of extrahepatic cholangiocarcinoma. This study was designed to unravel the proteome profile of this disease and to identify overexpressed proteins using mass spectrometry-based proteomic approaches.Methods We analyzed a discovery set of formalin-fixed paraffin-embedded tissues of 14 extrahepatic cholangiocarcinomas employing shotgun mass spectrometry, and compared proteome profiles with those of 7 controls. Then, selected candidates were verified by quantitative analysis using scheduled selected reaction monitoring-based mass spectrometry. Furthermore, immunohistochemical staining employed a validation set of 165 cases.ResultsIn total, 1,992 proteins were identified and 136 proteins were overexpressed. Verification of 58 selected proteins by quantitative analysis revealed 11 overexpressed proteins. Immunohistochemical validation for 10 proteins showed positive rates of S100P (84%), CEAM5 (75%), MUC5A (62%), OLFM4 (60%), OAT (42%), CAD17 (41%), FABPL (38%), AOFA (30%), K1C20 (25%) and CPSM (22%) in extrahepatic cholangiocarcinomas, which were rarely positive in controls.Conclusions We identified 10 proteins associated with extrahepatic cholangiocarcinoma using proteomic approaches. These proteins are potential targets for future diagnostic biomarkers and therapy.
    Journal of Hepato-Biliary-Pancreatic Sciences 04/2015; DOI:10.1002/jhbp.262 · 2.31 Impact Factor
  • Source
    Shanmugavel Chinnathambi · Nobutaka Hanagata
    Sweden - Japan Seminar on Nanomaterials and Nanotechnology; 03/2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The interaction of antimetabolite 5-fluorouracil (5FU) with bovine serum albumin (BSA) under UVC (253.7 nm) irradiation was investigated in the present study using UV-Vis spectroscopy, steady state/time resolved fluorescence spectroscopic techniques. The stability of protein was found to be very strong when BSA gets bind to 5FU and moreover it is compared with the free BSA under UVC irradiation. From the fluorescence spectroscopic study, the stability of the complex was found to acquire 2-fold stronger than free protein. From the molecular modelling studies, we came to know the hydrogen bonds between BSA and antimetabolite 5FU are strong, up to 70.4 J/m 2 under UVC irradiation.
    International Journal of Spectroscopy 01/2015; 2015:1-12. DOI:10.1155/2015/315764
  • Cuilian Tao · Yufang Zhu · Xianglan Li · Nobutaka Hanagata
    [Show abstract] [Hide abstract]
    ABSTRACT: We developed a potential cytosine-phosphate-guanosine oligodeoxynucleotides (CpG ODN) delivery system by binding of CpG ODN onto aminated mesoporous silica nanoparticles (MSNs) to form CpG/MSN-NH2 complexes for Toll-like receptor 9 (TLR9)-mediated induction of cytokines. Serum stability, in vitro cytotoxicity, cellular uptake, and interleukin-6 (IL-6) induction of CpG/MSN-NH2 complexes were investigated. The results showed that MSN-NH2 nanoparticles had no cytotoxicity to Raw 264.7 cells, and binding of CpG ODN to MSN-NH2 nanoparticles enhanced serum stability of CpG ODN due to the protection by nanoparticles. Furthermore, CpG/MSN-NH2 complexes could be efficiently taken up by cells due to small particle size and good dispersity. Most importantly, CpG/MSN-NH2 complexes significantly enhanced the level of IL-6 induction, stimulated by interaction between CpG ODN and TLR9 in endolysosomes. Therefore, MSNs would be a promising carrier for enhancing the delivery efficiency of CpG ODN.
    Microporous and Mesoporous Materials 11/2014; 204. DOI:10.1016/j.micromeso.2014.11.007 · 3.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Theranostic nanoparticles currently have been regarded as an emerging concept of 'personalized medicine' with diagnostic and therapeutic dual-functions. Eu3+ doped hydroxyapatite (HAp) has been regarded as a promising fluorescent probe for in vivo imaging applications. Additionally, substitution of Ca2+ with Fe3+ in HAp crystal may endow the capability of producing heat upon exposure to a magnetic field. Here we report a preliminary study of doping mechanism and photoluminescence of Eu3+ and Fe3+ doped HAp nanoparticles (Eu/Fe:HAp). HAp with varied concentration of Eu3+ and Fe3+ doping are presented as Eu(10 mol%):HAp, Eu(7 mol%)-Fe(3 mol%):HAp, Eu(5 mol%)-Fe(5 mol%):HAp, Eu(3 mol%)-Fe(7 mol%):HAp, and Fe(10 mol%):HAp in the study. The results showed that the HAp particles, in nano-size with rod-like morphology, were successfully doped with Eu3+ and Fe3+, and the particles can be well suspended in cell culture medium. Photoluminescence analysis revealed that particles have prominent emissions at 536 nm, 590 nm, 615 nm, 650 nm and 695 nm upon excitation at a wavelength of 397 nm. Moreover, these Eu/Fe:HAp nanoparticles belonged to B-type carbonated HAp, which has been considered an effective biodegradable and biocompatible drug/gene carrier in biological applications.
    Science and Technology of Advanced Materials 09/2014; 15(5):055005. DOI:10.1088/1468-6996/15/5/055005 · 3.51 Impact Factor
  • Cuilian Tao · Yufang Zhu · Xianglan Li · Nobutaka Hanagata
    [Show abstract] [Hide abstract]
    ABSTRACT: We developed a potential cytosine-phosphate-guanosine oligodeoxynucleotides (CpG ODN) delivery system based on magnetic mesoporous silica (MMS) nanoparticles by binding of CpG ODN onto aminated MMS (MMS-NH2) nanoparticles to form CpG/MMS-NH2 complexes for Toll-like receptor 9 (TLR9)-mediated induction of cytokines. Magnetization, serum stability, in vitro cytotoxicity, cellular uptake, and interleukin-6 (IL-6) induction of CpG/MMS-NH2 complexes were evaluated. The results showed that MMS nanoparticles exhibited superparamagnetic behavior with a saturation magnetization of 6.5 emu/g. Also, MMS-NH2 nanoparticles had no cytotoxicity to Raw 264.7 cells, and CpG/MMS-NH2 complexes enhanced serum stability of CpG ODN and could be localized in the endolysosomes after endocytosis by cells. Importantly, CpG/MMS-NH2 complexes significantly enhanced the TLR9-mediated IL-6 induction compared to free CpG ODN. Therefore, CpG/MMS-NH2 complexes could be magnetic targeted delivery and significantly enhance the TLR9-mediated cytokine induction for stimulating immune responses.
    RSC Advances 09/2014; 4(86). DOI:10.1039/C4RA08003C · 3.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: T cell receptor (TCR) phosphorylation requires the kinase Lck and the phosphatase CD45. CD45 activates Lck by dephosphorylating an inhibitory tyrosine of Lck to relieve autoinhibition. However, CD45 also dephosphorylates the TCR, and the spatial exclusion of CD45 from TCR clustering in the plasma membrane appears to attenuate this negative effect of CD45. To further investigate the role of CD45 in signal initiation, we reconstituted membrane TCR clusters in vitro on supported lipid bilayers. Fluorescence microscopy of single clusters showed that incorporation of CD45 enhanced phosphorylation of TCR clusters, but only when Lck co-clustered with TCR. We found that clustered Lck autophosphorylated the inhibitory tyrosine and thus could be activated by CD45, whereas diffusive Lck molecules did not. In the TCR-Lck clusters and at low CD45 density, we speculate that the effect of Lck activation may overcome dephosphorylation of TCR, resulting in a net positive regulation. The CD45 density in physiological TCR clusters is also low owing to the exclusion of CD45. Thus, we propose that the spatial organization of TCR/Lck/CD45 in T cell membranes is important not only for modulating the negative role of CD45 but also for creating conditions in which CD45 has a positive role in signal initiation.
    Journal of Biological Chemistry 08/2014; 289(41). DOI:10.1074/jbc.M114.574319 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate the in vivo foreign body reaction to bio-inert 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers, MPC polymer-coated porous substrates, with large surface area, were implanted subcutaneously in mice for 7 and 28 days, and the surrounding tissue response and cells infiltrating into the porous structure were evaluated. The MPC polymer surface induced low angiogenesis and thin encapsulation around the porous substrate, and slightly suppressed cell infiltration into the porous substrate. M1-type macrophage specific gene (CCR7) expression was suppressed by the MPC polymer surface after 7 days, resulting in the suppression of inflammatory cytokine/chemokine gene expression. However, the expression of these genes on the MPC polymer surface was higher than on the non-coated surface after 28 days. These findings suggest that MPC polymer surfaces successfully inhibit inflammatory responses during the early stage of tissue response, and seem to retard its occurrence over time.
    Journal of Biomaterials Science Polymer Edition 07/2014; 25(14-15):1-15. DOI:10.1080/09205063.2014.939917 · 1.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Graphene-like two-dimensional materials (2DMats) show application potential in optoelectronics and biomedicine due to their unique properties. However, environmental and biological influences of these 2DMats remain to be unveiled. Here we reported the antibacterial activity of two-dimensional (2D) chemically exfoliated MoS2 (ce-MoS2) sheets. We found that the antibacterial activity of ce-MoS2 sheets was much more potent than that of the raw MoS2 powders used for the synthesis of ce-MoS2 sheets possibly due to the 2D planar structure (high specific surface area) and higher conductivity of the ce-MoS2. We investigated the antibacterial mechanisms of the ce-MoS2 sheets and proposed their antibacterial pathways. We found that the ce-MoS2 sheets could produce reactive oxygen species (ROS), different from a previous report on graphene-based materials. Particularly, the oxidation capacity of the ce-MoS2 sheets toward glutathione oxidation showed a time and concentration dependent trend, which is fully consistent with the antibacterial behaviour of the ce-MoS2 sheets. The results suggest that antimicrobial behaviors were attributable to both membrane and oxidation stress. The antibacterial pathways include MoS2-bacteria contact induced membrane stress, superoxide anion (O2˙(-)) induced ROS production by the ce-MoS2, and the ensuing superoxide anion-independent oxidation. Our study thus indicates that the tailoring of the dimension of nanomaterials and their electronic properties would manipulate antibacterial activity.
    Nanoscale 07/2014; 6(17). DOI:10.1039/c4nr01965b · 7.39 Impact Factor
  • Song Chen · Xuetao Shi · Akiyoshi Osaka · Hong Gao · Nobutaka Hanagata
    [Show abstract] [Hide abstract]
    ABSTRACT: Novel silica hollow flowers (1–5 μm) were synthesized using globular apatite flowers as sacrificed template via a sol–gel route and then employed as biocompatible carrier of bone morphogenetic protein-2 (BMP-2) to stimulate osteoblast differentiation. Apatite was bio-mimetically synthesized from a well-known Kokubo’s simulated body fluid (SBF), then coated with silica in a Stöber-type silica sol–gel system, and finally dissolved in an acetic solution to yield silica hollow flowers. Analyses of SEM and TEM images show that the resultant silica flowers had a porous and hollow structure due to removal of apatite template by acetic treatment and their shell was constructed by numerous silica nanosheets (∼10 nm in silica shell). A larger specific surface of 890 m2/g was obtained for silica hollow flowers compared to silica-coated apatite due to the presence of porous and hollow structure. Silica hollow flowers had no significant toxicity after incubation with osteoblast MC3T3-E1 cells, indicating a good biocompatibility. They favored adsorption and supported a sustained release behavior of BMP-2. The released BMP-2 was biological active and enhanced osteoblast differentiation with higher ALP activity and larger amount of osteocalcin. The present silica hollow flowers are thus applicable to delivery system in tissue generation.
    Chemical Engineering Journal 06/2014; 246:1–9. DOI:10.1016/j.cej.2014.02.053 · 4.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Developing materials for "Nano-vehicles" with clinically approved drugs encapsulated is envisaged to enhance drug therapeutic effects and reduce the adverse effects. However, design and preparation of the biomaterials that are porous, nontoxic, soluble and stable in physiological solutions, and could be easily functionalized for effective drug deliveries are still challenging. Here we report an original and simple thermal substitution method to fabricate perfectly water-soluble and porous boron nitride (BN) materials featuring unprecedentedly high hydroxylation degrees. These hydroxylated BNs are biocompatible and can effectively load anticancer drugs (e.g. doxorubicin, DOX) up to contents three times exceeding their own weight. The same or even fewer drugs that are loaded on such BN carriers exhibit much higher potency for reducing the viability of LNcaP cancer cells than free drugs.
    ACS Nano 05/2014; 8(6). DOI:10.1021/nn5014808 · 12.88 Impact Factor
  • Kota Shiba · Motohiro Tagaya · Nobutaka Hanagata
    [Show abstract] [Hide abstract]
    ABSTRACT: Luminescent titania-fluorescein (FS) hybrid nanoparticles (NPs) were successfully synthesized by a sol–gel reaction of titanium alkoxide in the presence of octadecylamine using a fluidic reactor with a Y-type channel. The molar ratio of FS/Ti ratio was varied in the range from 1/1000 to 1/100 in order to obtain the hybrid NPs with the different luminescent behavior. The shape of the NPs is spherical and their sizes are 400 nm which is almost the same irrespective of the FS content, suggesting the different FS molecular states in one NP. We also demonstrated that the hybrid NPs exhibited a characteristic luminescence; the NPs with the higher and lower FS contents exhibited an enhanced luminescence in PBS and air, respectively, indicating that the FS states responded to the molecular environment. Through cytocompatible experiments using the NPs, it turned out that they had a high compatibility for fibroblasts. Therefore, the preparation of a series of the luminescent NPs with a tunable luminescence property was achieved. The results will lead to a guideline to determine a proper combination between material composition and an environment where they are used, being useful for biomedical applications.
    ACS Applied Materials & Interfaces 04/2014; 6(9):6825–6834. DOI:10.1021/am500636d · 6.72 Impact Factor
  • Source
    Song Chen · Huijie Zhang · Xuetao Shi · Hongkai Wu · Nobutaka Hanagata
    [Show abstract] [Hide abstract]
    ABSTRACT: Chitosan/cytosine-phosphodiester-guanine oligodeoxynucleotide (CpG ODN) nanoparticles as potential immunostimulatory adjuvants were synthesized by the conventional bulk mixing (BM) method and a novel microfluidic (MF) method. Their size and size distribution, CpG ODN loading efficiency, surface charge, biocompatibility, cellular uptake, and immunostimulatory response were investigated. In the BM method, nanoparticles were synthesized by vortexing a mixture of chitosan solution and CpG ODN2006x3-PD solution. In the MF method, the nanoparticles were synthesized by rapidly mixing a chitosan solution and CpG ODN solution in a poly(dimethylsiloxane) microfluidic device. Our results indicated that particle size and size distribution, CpG ODN loading efficiency, and surface charge could be easily adjusted by using the tuning preparation method and controlling the flow ratio of fluid rates in the different microfluidic channels. Compared with the BM method, the MF method yielded a decrease in particle size and size range, an increase in CpG ODN loading efficiency, and a decrease in surface charge. After the particles were exposed to 293XL-hTLR9 cells, a water-soluble tetrazolium salt assay indicated that the BM and MF-processed nanoparticles had no significant toxicity and were biocompatible. An immunochemical assay indicated that both types of nanoparticles entered 293XL-hTLR9 cells and were located in the endolysosomes. The MF-processed nanoparticles showed much higher cellular uptake efficiency. After the particles were exposed to peripheral blood mononuclear cells, an enzyme-linked immunosorbent assay quantitatively indicated that both types of nanoparticles stimulated the production of interleukin-6 and the MF-processed nanoparticles showed a much stronger immunostimulatory response. These results indicate that the MF method can be used to synthesize nanoparticles with a controllable size and size range for enhancing the biological activity of DNA and other biomolecules.
    Lab on a Chip 04/2014; 14(11). DOI:10.1039/c4lc00015c · 5.75 Impact Factor
  • Source
    Xia Li · Nobutaka Hanagata · Xuebin Wang · Maho Yamaguchi · Wei Yi · Yoshio Bando · Dmitri Golberg
    [Show abstract] [Hide abstract]
    ABSTRACT: Boron nitride nanotubes@NaGdF4:Eu composites with core@shell structures were fabricated giving the opportunity to trace, target and thus to manipulate BNNTs in vitro. The composites show a significantly higher cellular uptake and chemotherapy drug intracellular delivery ability in the presence of an external magnetic field than that in its absence.
    Chemical Communications 03/2014; 50(33). DOI:10.1039/c4cc00990h · 6.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: a b s t r a c t 5-Fluorouracil is clinically used as antitumor drug to treat many types of cancer, which is made available to the target tissues in conjugation with transport protein serum albumin. 5-Fluorouracil which is low toxic when compared to the other drugs of this family and hence its binding characteristics are therefore of prime interest. The steady state and time resolved fluorescence studies, Fourier transform infrared spectroscopy and circular dichroism studies were employed to explain the mode and the mechanism of interaction of 5FU with BSA. 5-Fluorouracil binding is characterized with one high affinity binding site, with the binding constant of the order of 10 4 . The molecular distance r ($1.5 nm) between donor (bovine serum abumin) and acceptor (5-fluorouracil) was estimated according to Forster's theory of non-radiative energy transfer. The feature of 5-fluorouracil induced structural changes of bovine serum albumin has been studied in detail by circular dichroism and Fourier transform infrared spectroscopy analysis. The binding dynamics was expounded by synchronous fluorescence spectroscopy, florescence lifetime measurements and molecular modeling elicits that hydrophobic interactions and hydrogen bonding, stabilizes the 5-fluorouracil interaction with BSA. & 2014 Elsevier B.V. All rights reserved.
    Journal of Luminescence 02/2014; 151:1-10. DOI:10.1016/j.jlumin.2014.01.063 · 2.37 Impact Factor
  • Cuilian Tao · Yufang Zhu · Yi Xu · Min Zhu · Hiromi Morita · Nobutaka Hanagata
    [Show abstract] [Hide abstract]
    ABSTRACT: We developed a potential immunostimulatory double-stranded DNA (dsDNA) delivery system by the binding of dsDNA to amino-modified mesoporous silica nanoparticles (MSNs) to form MSN-NH2/dsDNA complexes. Serum stability, in vitro cytotoxicity, cell uptake, and type I interferon-α (IFN-α) induction of MSN-NH2/dsDNA complexes were evaluated. The results showed that MSN-NH2 nanoparticles had no cytotoxicity to Raw 264.7 cells, and MSN-NH2/dsDNA complexes enhanced the serum stability of dsDNA due to the protection by nanoparticles and exhibited a high efficiency of cell uptake due to a small particle size and excellent dispersity. Most importantly, MSN-NH2/dsDNA complexes significantly enhanced the level of IFN-α induction, triggered by cytosolic DNA sensor proteins. Therefore, binding of immunostimulatory DNA to MSNs would play a promising role for enhancing the delivery efficiency of immunostimulatory DNA drugs.
    Dalton Transactions 02/2014; 43(13). DOI:10.1039/c3dt53433b · 4.20 Impact Factor
  • Source
    Biophysical Journal 01/2014; 106(2):20a. DOI:10.1016/j.bpj.2013.11.167 · 3.97 Impact Factor

Publication Stats

2k Citations
529.42 Total Impact Points


  • 2010–2015
    • Hokkaido University
      • Graduate School of Life Science
      Sapporo, Hokkaidō, Japan
  • 2006–2015
    • National Institute for Materials Science
      • • Nanotechnology Innovation Station
      • • International Center for Young Scientist (ICYS)
      Tsukuba, Ibaraki, Japan
  • 2014
    • Tokyo Institute of Technology
      • Department of Metallurgy and Ceramics Science
      Edo, Tōkyō, Japan
  • 2013–2014
    • Anna University, Chennai
      • Department of Medical Physics
      Chennai, Tamil Nādu, India
  • 2003–2007
    • Tokyo University of Technology
      • School of Bionics
      Edo, Tōkyō, Japan
  • 1993–2006
    • The University of Tokyo
      • Research Center for Advanced Science and Technology
      Tokyo, Tokyo-to, Japan