Neelima Sehgal

Stony Brook University, Stony Brook, New York, United States

Are you Neelima Sehgal?

Claim your profile

Publications (65)330.78 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a statistical detection of the gravitational lensing of the cosmic microwave background by $10^{13}$ solar mass dark matter halos. Lensing convergence maps from the Atacama Cosmology Telescope Polarimeter (ACTPol) are stacked at the positions of around 12,000 optically-selected CMASS galaxies from the SDSS-III/BOSS survey. The mean lensing signal is consistent with simulated dark matter halo profiles, and is favored over a null signal at 3.2 sigma significance. This result demonstrates the potential of microwave background lensing to probe the dark matter distribution in galaxy group and galaxy cluster halos.
    Physical Review Letters 04/2015; 114(15):151302. DOI:10.1103/PhysRevLett.114.151302 · 7.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We measure the cross-correlation of cosmic microwave background lensing convergence maps derived from Atacama Cosmology Telescope data with galaxy lensing convergence maps as measured by the Canada-France-Hawaii Telescope Stripe 82 Survey. The CMB-galaxy lensing cross power spectrum is measured for the first time with a significance of 3.2{\sigma}, which corresponds to a 16% constraint on the amplitude of density fluctuations at redshifts ~ 0.9. With upcoming improved lensing data, this novel type of measurement will become a powerful cosmological probe, providing a precise measurement of the mass distribution at intermediate redshifts and serving as a calibrator for systematic biases in weak lensing measurements.
    Physical Review D 03/2015; 91:062001. DOI:10.1103/PhysRevD.91.062001 · 4.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We correlate the positions of radio galaxies in the FIRST survey with the CMB lensing convergence estimated from the Atacama Cosmology Telescope over 470 square degrees to determine the bias of these galaxies. We remove optically cross-matched sources below redshift $z=0.2$ to preferentially select Active Galactic Nuclei (AGN). We measure the angular cross-power spectrum $C_l^{\kappa g}$ at $4.4\sigma$ significance in the multipole range $100<l<3000$, corresponding to physical scales between $\approx$ 2--60 Mpc at an effective redshift $z_{\rm eff}= 1.5$. Modelling the AGN population with a redshift-dependent bias, the cross-spectrum is well fit by the Planck best-fit $\Lambda$CDM cosmological model. Fixing the cosmology we fit for the overall bias model normalization, finding $b(z_{\rm eff}) = 3.5 \pm 0.8$ for the full galaxy sample, and $b(z_{\rm eff})=4.0\pm1.1 (3.0\pm1.1)$ for sources brighter (fainter) than 2.5 mJy. This measurement characterizes the typical halo mass of radio-loud AGN: we find $\log(M_{\rm halo} / M_\odot) = 13.6^{+0.3}_{-0.4}$.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We develop a general framework for generating estimators of a given quantity which are unbiased to a given order in the difference between the true value of the underlying quantity and the fiducial position in theory space around which we expand the likelihood. We apply this formalism to rederive the optimal quadratic estimator and show how the replacement of the second derivative matrix with the Fisher matrix is generic way of creating an unbiased estimator (if one does not modify the initial guess at the weight matrix $C^{-1}$ iteratively based estimates from the data, which generally creates a bias). Next we apply the approach to estimation of shear lensing, closely following the work of Bernstein and Armstrong (2014). Our first order estimator reduces to their estimator in the limit of zero shear, but it also naturally allows for the case of non-constant shear and the easy calculation of correlation functions or power spectra using standard methods. Both our first-order estimator and Bernstein and Armstrong's estimator exhibit a bias which is quadratic in true shear. Our third-order estimator is, at least in the realm of the toy problem of Bernstein and Armstrong, unbiased to 0.1% in relative shear errors $\Delta {\bf g}/{\bf g}$ for shears up to $|{\bf g}|=0.2$.
    Journal of Cosmology and Astroparticle Physics 01/2015; 2015(01):022. DOI:10.1088/1475-7516/2015/01/022 · 6.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a measurement of the gravitational lensing of the Cosmic Microwave Background (CMB) temperature and polarization fields obtained by cross-correlating the reconstructed convergence signal from the first season of ACTPol data at 146 GHz with Cosmic Infrared Background (CIB) fluctuations measured using the Planck satellite. Using an overlap area of 206 square degrees, we detect gravitational lensing of the CMB polarization by large-scale structure at a statistical significance of 4.5 sigma. Combining both CMB temperature and polarization data gives a lensing detection at 9.1 sigma significance. A B-mode polarization lensing signal is present with a significance of 3.2 sigma. We also present the first measurement of CMB lensing--CIB correlation at small scales corresponding to l > 2000. Null tests and systematic checks show that our results are not significantly biased by astrophysical or instrumental systematic effects, including Galactic dust. Fitting our measurements to the best-fit lensing-CIB cross power spectrum measured in Planck data, scaled by an amplitude A, gives A=1.02 +0.12/-0.18 (stat.) +/-0.06(syst.), consistent with the Planck results.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a multi-wavelength analysis of eleven Sunyaev Zel'dovich effect (SZE)-selected galaxy clusters (ten with new data) from the Atacama Cosmology Telescope (ACT) southern survey. We have obtained new imaging from the Large APEX Bolometer Camera (345GHz; LABOCA) on the Atacama Pathfinder EXperiment (APEX) telescope, the Australia Telescope Compact Array (2.1GHz; ATCA), and the Spectral and Photometric Imaging Receiver (250, 350, and $500\,\rm\mu m$; SPIRE) on the Herschel Space Observatory. Spatially-resolved 345GHz SZE increments with integrated S/N > 5 are found in six clusters. We compute 2.1GHz number counts as a function of cluster-centric radius and find significant enhancements in the counts of bright sources at projected radii $\theta < \theta_{2500}$. By extrapolating in frequency, we predict that the combined signals from 2.1GHz-selected radio sources and 345GHz-selected SMGs contaminate the 148GHz SZE decrement signal by ~5% and the 345GHz SZE increment by ~18%. After removing radio source and SMG emission from the SZE signals, we use ACT, LABOCA, and (in some cases) new Herschel SPIRE imaging to place constraints on the clusters' peculiar velocities. The sample's average peculiar velocity relative to the cosmic microwave background is $153\pm 383\,\rm km\,s^{-1}$.
    The Astrophysical Journal 11/2014; 803(2). DOI:10.1088/0004-637X/803/2/79 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a measurement of the one-point probability distribution function (PDF) of the thermal Sunyaev-Zel'dovich (tSZ) decrement in the pixel temperature histogram of filtered 148 GHz sky maps from the Atacama Cosmology Telescope (ACT). The PDF includes the signal from all galaxy clusters in the map, including objects below the signal-to-noise threshold for individual detection, making it a particularly sensitive probe of the amplitude of matter density perturbations, $\sigma_8$. We use a combination of analytic halo model calculations and numerical simulations to compute the theoretical tSZ PDF and its covariance matrix, accounting for all noise sources and including relativistic corrections. From the measured ACT 148 GHz PDF alone, we find $\sigma_8 = 0.793 \pm 0.018$, with additional systematic errors of $\pm 0.017$ due to uncertainty in intracluster medium gas physics and $\pm 0.006$ due to uncertainty in infrared point source contamination. Using effectively the same data set, the statistical error here is a factor of two lower than that found in ACT's previous $\sigma_8$ determination based solely on the skewness of the tSZ signal. In future temperature maps with higher sensitivity, the tSZ PDF will break the degeneracy between intracluster medium gas physics and cosmological parameters.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Future arcminute resolution polarization data from ground-based Cosmic Microwave Background (CMB) observations can be used to estimate the contribution to the temperature power spectrum from the primary anisotropies and to uncover the signature of reionization near $\ell=1500$ in the small angular-scale temperature measurements. Our projections are based on combining expected small-scale E-mode polarization measurements from Advanced ACTPol in the range $300<\ell<3000$ with simulated temperature data from the full Planck mission in the low and intermediate $\ell$ region, $2<\ell<2000$. We show that the six basic cosmological parameters determined from this combination of data will predict the underlying primordial temperature spectrum at high multipoles to better than $1\%$ accuracy. Assuming an efficient cleaning from multi-frequency channels of most foregrounds in the temperature data, we investigate the sensitivity to the only residual secondary component, the kinematic Sunyaev-Zel'dovich (kSZ) term. The CMB polarization is used to break degeneracies between primordial and secondary terms present in temperature and, in effect, to remove from the temperature data all but the residual kSZ term. We estimate a $15 \sigma$ detection of the diffuse homogeneous kSZ signal from expected AdvACT temperature data at $\ell>1500$, leading to a measurement of the amplitude of matter density fluctuations, $\sigma_8$, at $1\%$ precision. Alternatively, by exploring the reionization signal encoded in the patchy kSZ measurements, we bound the time and duration of the reionization with $\sigma(z_{\rm re})=1.1$ and $\sigma(\Delta z_{\rm re})=0.2$. We find that these constraints degrade rapidly with large beam sizes, which highlights the importance of arcminute-scale resolution for future CMB surveys.
    Journal of Cosmology and Astroparticle Physics 06/2014; JCAP08(2014)010. DOI:10.1088/1475-7516/2014/08/010 · 6.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on measurements of the cosmic microwave background (CMB) and celestial polarization at 146 GHz made with the Atacama Cosmology Telescope Polarimeter (ACTPol) in its first three months of observing. Four regions of sky covering a total of 270 square degrees were mapped with an angular resolution of $1.3'$. The map noise levels in the four regions are between 11 and 17 $\mu$K-arcmin. We present TT, TE, EE, TB, EB, and BB power spectra from three of these regions. The observed E-mode polarization power spectrum, displaying six acoustic peaks in the range $200<\ell<3000$, is an excellent fit to the prediction of the best-fit cosmological models from WMAP9+ACT and Planck data. The polarization power spectrum, which mainly reflects primordial plasma velocity perturbations, provides an independent determination of cosmological parameters consistent with those based on the temperature power spectrum, which results mostly from primordial density perturbations. We find that without masking any point sources in the EE data at $\ell<9000$, the Poisson tail of the EE power spectrum due to polarized point sources has an amplitude less than $2.4$ $\mu$K$^2$ at $\ell = 3000$ at 95\% confidence. Finally, we report that the Crab Nebula, an important polarization calibration source at microwave frequencies, has 8.7\% polarization with an angle of $150.9^\circ \pm 0.5^\circ$ when smoothed with a $5'$ Gaussian beam.
    Journal of Cosmology and Astroparticle Physics 05/2014; JCAP10(2014)007. DOI:10.1088/1475-7516/2014/10/007 · 5.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the temperature power spectra of the cosmic microwave background (CMB) derived from the three seasons of data from the Atacama Cosmology Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. We detect and correct for contamination due to the Galactic cirrus in our equatorial maps. We present the results of a number of tests for possible systematic error and conclude that any effects are not significant compared to the statistical errors we quote. Where they overlap, we cross-correlate the ACT and the South Pole Telescope (SPT) maps and show they are consistent. The measurements of higher-order peaks in the CMB power spectrum provide an additional test of the Lambda CDM cosmological model, and help constrain extensions beyond the standard model. The small angular scale power spectrum also provides constraining power on the Sunyaev-Zel'dovich effects and extragalactic foregrounds. We also present a measurement of the CMB gravitational lensing convergence power spectrum at 4.6-sigma detection significance.
    Journal of Cosmology and Astroparticle Physics 04/2014; 2014(04):014. DOI:10.1088/1475-7516/2014/04/014 · 5.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the temperature power spectrum of the Cosmic Microwave Background obtained by cross-correlating maps from the Atacama Cosmology Telescope (ACT) at 148 and 218 GHz with maps from the Planck satellite at 143 and 217 GHz, in two overlapping regions covering 592 square degrees. We find excellent agreement between the two datasets at both frequencies, quantified using the variance of the residuals between the ACT power spectra and the ACTxPlanck cross-spectra. We use these cross-correlations to calibrate the ACT data at 148 and 218 GHz, to 0.7% and 2% precision respectively. We find no evidence for anisotropy in the calibration parameter. We compare the Planck 353 GHz power spectrum with the measured amplitudes of dust and cosmic infrared background (CIB) of ACT data at 148 and 218 GHz. We also compare planet and point source measurements from the two experiments.
    Journal of Cosmology and Astroparticle Physics 03/2014; DOI:10.1088/1475-7516/2014/07/016 · 5.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a statistical analysis of the millimeter-wavelength properties of 1.4 GHz-selected sources and a detection of the Sunyaev-Zel'dovich (SZ) effect associated with the halos that host them. The Atacama Cosmology Telescope (ACT) has conducted a survey at 148 GHz, 218 GHz and 277 GHz along the celestial equator. Using samples of radio sources selected at 1.4 GHz from FIRST and NVSS, we measure the stacked 148, 218 and 277 GHz flux densities for sources with 1.4 GHz flux densities ranging from 5 to 200 mJy. At these flux densities, the radio source population is dominated by active galactic nuclei (AGN), with both steep and flat spectrum populations, which have combined radio-to-millimeter spectral indices ranging from 0.5 to 0.95, reflecting the prevalence of steep spectrum sources at high flux densities and the presence of flat spectrum sources at lower flux densities. The thermal SZ effect associated with the halos that host the AGN is detected at the 5$\sigma$ level through its spectral signature. When we compare the SZ effect with weak lensing measurements of radio galaxies, we find that the relation between the two is consistent with that measured by Planck for local bright galaxies. We present a detection of the SZ effect in some of the lowest mass halos (average $M_{200}\approx10^{13}$M$_{\odot}h_{70}^{-1}$) studied to date. This detection is particularly important in the context of galaxy evolution models, as it confirms that galaxies with radio AGN also typically support hot gaseous halos. With Herschel observations, we show that the SZ detection is not significantly contaminated by dust. We show that 5 mJy$<S_{1.4}<$200 mJy radio sources contribute $\ell(\ell+1)C_{\ell}/(2\pi)=0.37\pm0.03\mu$K$^2$ to the angular power spectrum at $\ell=3000$ at 148 GHz, after accounting for the SZ effect associated with their host halos.
    Monthly Notices of the Royal Astronomical Society 10/2013; 445(1):460-478. DOI:10.1093/mnras/stu1592 · 4.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The lensing power spectrum from cosmic microwave background (CMB) temperature maps will be measured with unprecedented precision with upcoming experiments, including upgrades to ACT and SPT. Achieving significant improvements in cosmological parameter constraints, such as percent level errors on sigma_8 and an uncertainty on the total neutrino mass of approximately 50 meV, requires percent level measurements of the CMB lensing power. This necessitates tight control of systematic biases. We study several types of biases to the temperature-based lensing reconstruction signal from foreground sources such as radio and infrared galaxies and the thermal Sunyaev-Zel'dovich effect from galaxy clusters. These foregrounds bias the CMB lensing signal due to their non-Gaussian nature. Using simulations as well as some analytical models we find that these sources can substantially impact the measured signal if left untreated. However, these biases can be brought to the percent level if one masks galaxies with fluxes at 150 GHz above 1 mJy and galaxy clusters with masses above M_vir = 10^14 M_sun. To achieve such percent level bias, we find that only modes up to a maximum multipole of l_max ~ 2500 should be included in the lensing reconstruction. We also discuss ways to minimize additional bias induced by such aggressive foreground masking by, for example, exploring a two-step masking and in-painting algorithm.
    The Astrophysical Journal 10/2013; 786(1). DOI:10.1088/0004-637X/786/1/13 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Updated constraints on dark matter cross section and mass are presented combining CMB power spectrum measurements from Planck, WMAP9, ACT, and SPT as well as several low-redshift datasets (BAO, HST, supernovae). For the CMB datasets, we combine WMAP9 temperature and polarization data for l <= 431 with Planck temperature data for 432 < l < 2500, ACT and SPT data for l > 2500, and Planck CMB four-point lensing measurements. We allow for redshift-dependent energy deposition from dark matter annihilation by using a `universal' energy absorption curve. We also include an updated treatment of the excitation, heating, and ionization energy fractions, and provide updated deposition efficiency factors (f_eff) for 41 different dark matter models. Assuming perfect energy deposition (f_eff = 1) and a thermal cross section, dark matter masses below 26 GeV are excluded at the 2-sigma level. Assuming a more generic efficiency of f_eff = 0.2, thermal dark matter masses below 5 GeV are disfavored at the 2-sigma level. These limits are a factor of ~2 improvement over those from WMAP9 data alone. These current constraints probe, but do not exclude, dark matter as an explanation for reported anomalous indirect detection observations from AMS-02/PAMELA and the Fermi Gamma-ray Inner Galaxy data. They also probe relevant models that would explain anomalous direct detection events from CDMS, CRESST, CoGeNT, and DAMA, as originating from a generic thermal WIMP. Projected constraints from the full Planck release should improve the current limits by another factor of ~2, but will not definitely probe these signals. The proposed CMB Stage IV experiment will more decisively explore the relevant regions and improve upon the Planck constraints by another factor of ~2.
    Physical Review D 10/2013; 89(10). DOI:10.1103/PhysRevD.89.103508 · 4.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The dwarf spheroidal satellite galaxies of the Milky Way are some of the most dark-matter-dominated objects known. Due to their proximity, high dark matter content, and lack of astrophysical backgrounds, dwarf spheroidal galaxies are widely considered to be among the most promising targets for the indirect detection of dark matter via gamma rays. Here we report on gamma-ray observations of 25 Milky Way dwarf spheroidal satellite galaxies based on 4 years of Fermi Large Area Telescope (LAT) data. None of the dwarf galaxies are significantly detected in gamma rays, and we present gamma-ray flux upper limits between 500 MeV and 500 GeV. We determine the dark matter content of 18 dwarf spheroidal galaxies from stellar kinematic data and combine LAT observations of 15 dwarf galaxies to constrain the dark matter annihilation cross section. We set some of the tightest constraints to date on the the annihilation of dark matter particles with masses between 2 GeV and 10 TeV into prototypical Standard Model channels. We find these results to be robust against systematic uncertainties in the LAT instrument performance, diffuse gamma-ray background modeling, and assumed dark matter density profile.
    Physical Review D 10/2013; 89(4). DOI:10.1103/PhysRevD.89.042001 · 4.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve sigma(sum m_nu) = 16 meV and sigma(N_eff) = 0.020. Such a mass measurement will produce a high significance detection of non-zero sum m_nu, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics --- the origin of mass. This precise a measurement of N_eff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that N_eff = 3.046.
    Astroparticle Physics 09/2013; DOI:10.1016/j.astropartphys.2014.05.014 · 4.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The quantity and quality of cosmic structure observations have greatly accelerated in recent years. Further leaps forward will be facilitated by imminent projects, which will enable us to map the evolution of dark and baryonic matter density fluctuations over cosmic history. The way that these fluctuations vary over space and time is sensitive to the nature of dark matter and dark energy. Dark energy and gravity both affect how rapidly structure grows; the greater the acceleration, the more suppressed the growth of structure, while the greater the gravity, the more enhanced the growth. While distance measurements also constrain dark energy, the comparison of growth and distance data tests whether General Relativity describes the laws of physics accurately on large scales. Modified gravity models are able to reproduce the distance measurements but at the cost of altering the growth of structure (these signatures are described in more detail in the accompanying paper on Novel Probes of Gravity and Dark Energy). Upcoming surveys will exploit these differences to determine whether the acceleration of the Universe is due to dark energy or to modified gravity. To realize this potential, both wide field imaging and spectroscopic redshift surveys play crucial roles. Projects including DES, eBOSS, DESI, PFS, LSST, Euclid, and WFIRST are in line to map more than a 1000 cubic-billion-light-year volume of the Universe. These will map the cosmic structure growth rate to 1% in the redshift range 0<z<2, over the last 3/4 of the age of the Universe.
    Astroparticle Physics 09/2013; DOI:10.1016/j.astropartphys.2014.07.004 · 4.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments---the theory of cosmic inflation---and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1% of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5-sigma measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.
    Astroparticle Physics 09/2013; DOI:10.1016/j.astropartphys.2014.05.01 · 4.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a catalog of 191 extragalactic sources detected by the Atacama Cosmology Telescope (ACT) at 148 GHz and/or 218 GHz in the 2008 Southern survey. Flux densities span 14-1700 mJy, and we use source spectral indices derived using ACT-only data to divide our sources into two sub-populations: 167 radio galaxies powered by central active galactic nuclei (AGN), and 24 dusty star-forming galaxies (DSFGs). We cross-identify 97% of our sources (166 of the AGN and 19 of the DSFGs) with those in currently available catalogs. When combined with flux densities from the Australian Telescope 20 GHz survey and follow-up observations with the Australia Telescope Compact Array, the synchrotron-dominated population is seen to exhibit a steepening of the slope of the spectral energy distribution from 20 to 148 GHz, with the trend continuing to 218 GHz. The ACT dust-dominated source population has a median spectral index of 3.7+0.62-0.86, and includes both local galaxies and sources with redshifts as great as 5.6. Dusty sources with no counterpart in existing catalogs likely belong to a recently discovered subpopulation of DSFGs lensed by foreground galaxies or galaxy groups.
    Monthly Notices of the Royal Astronomical Society 06/2013; DOI:10.1093/mnras/stu001 · 4.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe the measurement of the beam profiles and window functions for the Atacama Cosmology Telescope (ACT), which operated from 2007 to 2010 with kilo-pixel bolometer arrays centered at 148, 218, and 277 GHz. Maps of Saturn are used to measure the beam shape in each array and for each season of observations. Radial profiles are transformed to Fourier space in a way that preserves the spatial correlations in the beam uncertainty, to derive window functions relevant for angular power spectrum analysis. Several corrections are applied to the resulting beam transforms, including an empirical correction measured from the final CMB survey maps to account for the effects of mild pointing variation and alignment errors. Observations of Uranus made regularly throughout each observing season are used to measure the effects of atmospheric opacity and to monitor deviations in telescope focus over the season. Using the WMAP-based calibration of the ACT maps to the CMB blackbody, we obtain precise measurements of the brightness temperatures of the Uranus and Saturn disks at effective frequencies of 149 and 219 GHz. For Uranus we obtain thermodynamic brightness temperatures T_U^{149} = 106.7 \pm 2.2 K and T_U^{219} = 100.1 \pm 3.1 K. For Saturn, we model the effects of the ring opacity and emission using a simple model and obtain resulting (unobscured) disk temperatures of T_S^{149} = 137.3 \pm 3.2 K and T_S^{219} = 137.3 \pm 4.7 K.
    The Astrophysical Journal Supplement Series 03/2013; 209(1):17. DOI:10.1088/0067-0049/209/1/17 · 14.14 Impact Factor

Publication Stats

1k Citations
330.78 Total Impact Points

Institutions

  • 2013–2015
    • Stony Brook University
      • Department of Physics and Astronomy
      Stony Brook, New York, United States
  • 2011–2013
    • Princeton University
      • • Department of Astrophysical Sciences
      • • Department of Physics
      Princeton, New Jersey, United States
    • University of California, Berkeley
      • Department of Physics
      Berkeley, MO, United States
  • 2009–2013
    • Stanford University
      • Department of Physics
      Palo Alto, California, United States
  • 2005–2013
    • Rutgers, The State University of New Jersey
      • Department Physics and Astronomy
      New Brunswick, New Jersey, United States
  • 2010–2011
    • University of Pennsylvania
      • Department of Physics and Astronomy
      Philadelphia, Pennsylvania, United States
    • The University of Tokyo
      • Institute for the Physics and Mathematics of the Universe (IPMU)
      Edo, Tōkyō, Japan
    • Pontifical Catholic University of Chile
      • Facultad de Física
      CiudadSantiago, Santiago, Chile