Michael A White

University of Texas Southwestern Medical Center, Dallas, Texas, United States

Are you Michael A White?

Claim your profile

Publications (80)773.65 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: AMP-activated protein kinase (AMPK) is a master sensor and regulator of cellular energy status. Upon metabolic stress, AMPK suppresses anabolic and promotes catabolic processes to regain energy homeostasis. Cancer cells can occasionally suppress the growth-restrictive AMPK pathway by mutation of an upstream regulatory kinase. Here, we describe a widespread mechanism to suppress AMPK through its ubiquitination and degradation by the cancer-specific MAGE-A3/6-TRIM28 ubiquitin ligase. MAGE-A3 and MAGE-A6 are highly similar proteins normally expressed only in the male germline but frequently re-activated in human cancers. MAGE-A3/6 are necessary for cancer cell viability and are sufficient to drive tumorigenic properties of non-cancerous cells. Screening for targets of MAGE-A3/6-TRIM28 revealed that it ubiquitinates and degrades AMPKα1. This leads to inhibition of autophagy, activation of mTOR signaling, and hypersensitization to AMPK agonists, such as metformin. These findings elucidate a germline mechanism commonly hijacked in cancer to suppress AMPK. Copyright © 2015 Elsevier Inc. All rights reserved.
    Cell. 02/2015; 160(4):715-728.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: KRAS mutation, which occurs in ∼95% of pancreatic ductal adenocarcinoma (PDA), has been shown to program tumor metabolism. MCT4 is highly upregulated in a subset of PDA with a glycolytic gene expression program and poor survival. Models with high levels of MCT4 preferentially employ glycolytic metabolism. Selectively in such "addicted" models, MCT4 attenuation compromised glycolytic flux with compensatory induction of oxidative phosphorylation and scavenging of metabolites by macropinocytosis and autophagy. In spite of these adaptations, MCT4 depletion induced cell death characterized by elevated reactive oxygen species and metabolic crisis. Cell death induced by MCT4-depletion was augmented by inhibition of compensatory pathways. In xenograft models, MCT4 had a significant impact on tumor metabolism and was required for rapid tumor growth. Together, these findings illustrate the metabolic diversity of PDA described by MCT4, delineate pathways through which this lactate transporter supports cancer growth, and demonstrate that PDA can be rationally targeted based on metabolic addictions. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
    Cell reports. 12/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) have been shown to regulate viral infection, but the miRNAs that target intracellular sensors and adaptors of innate immunity have not been fully uncovered. Here we conduct an miRNA mimic screen and validation with miRNA inhibitors in cells infected with vesicular stomatitis virus (VSV) to identify miRNAs that regulate viral-host interactions. We identify miR-576-3p as a robust regulator of infection by VSV and other RNA and DNA viruses. While an miR-576-3p mimic sensitizes cells to viral replication, inhibition of endogenous miR-576-3p prevents infection. miR-576-3p is induced by IRF3 concomitantly with interferon and targets STING, MAVS and TRAF3, which are critical factors for interferon expression. Interestingly, miR-576-3p and its binding sites are primate-specific and miR-576-3p levels are reduced in inflammatory diseases. These findings indicate that induction of miR-576-3p by IRF3 triggers a feedback mechanism to reduce interferon expression and set an antiviral response threshold to likely avoid excessive inflammation.
    Nature Communications 09/2014; 5:4963. · 10.74 Impact Factor
  • Banu Eskiocak, Aktar Ali, Michael A White
    [Show abstract] [Hide abstract]
    ABSTRACT: XCT 790 is widely used to inhibit estrogen-related receptor alpha (ERRα) activity as an inverse agonist. Here, we report that XCT 790 potently activates AMP kinase (AMPK), in a dose-dependent and ERRα independent manner, with active concentrations more than 25-fold below those typically used to perturb ERRα. AMPK activation is secondary to inhibition of energy production as XCT 790 rapidly depletes cellular ATP. A concomitant increase in oxygen consumption rates suggests uncoupling of the mitochondrial electron transport chain. Consistent with this, XCT 790 decreased mitochondrial membrane potential without affecting mitochondrial mass. Therefore, XCT 790 is a potent, fast acting, mitochondrial uncoupler independent of its inhibition of ERRα. The biological activity together with structural features in common with the chemical uncouplers FCCP and CCCP indicate likely mode of action as a proton ionophore.
    Biochemistry 07/2014; · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A challenge for large-scale siRNA loss-of-function studies is the biological pleiotropy resulting from multiple modes of action of siRNA reagents. A major confounding feature of these reagents is the microRNA-like translational quelling resulting from short regions of oligonucleotide complementarity to many different messenger RNAs. We developed a computational approach, deconvolution analysis of RNAi screening data, for automated quantitation of off-target effects in RNAi screening data sets. Substantial reduction of off-target rates was experimentally validated in five distinct biological screens across different genome-wide siRNA libraries. A public-access graphical-user-interface has been constructed to facilitate application of this algorithm.
    Nucleic Acids Research 06/2014; · 8.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: RASSF1A is one of the most frequently inactivated genes in over 30 different types of cancers (1). Despite the prevalence of RASSF1A silencing in human cancer, the mechanism by which RASSF1A functions as a tumor suppressor is not well understood. Characterization of the consequences of RASSF1A loss on epithelial cell proliferation revealed that RASSF1A expression suppresses both miR-21 expression and ERK1/2 kinase activation. The mechanism of the former is through restraint of SCF(ßTrCP) -dependent destruction of the REST tumor suppressor, and consequent inhibition of miR-21 promoter activation. The mechanism of the latter is through physical sequestration of MST2, which results in accumulation of inactivating S259 phosphorylation of RAF1. Whether or not inactivation of these RASSF1A regulatory relationships can unleash enhanced proliferative capacity is dependent upon the coupling of SCF(ßTrCP) and miR-21 to suppression of SKP2 protein translation and stability. Airway epithelial cultures retain this coupling and therefore respond to RASSF1A inactivation by p27-dependent cell cycle arrest. In contrast, colonic crypt-derived epithelial cells have uncoupled SCF(ßTrCP) from SKP2 and respond to RASSF1A inactivation by enhanced proliferation rates. These observations help account for context-specific molecular etiology of oncogenic transformation, and suggest intervention strategies for recently developed SKP2 inhibitors.
    Molecular and Cellular Biology 04/2014; · 5.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Island populations provide natural laboratories for studying key contributors to evolutionary change, including natural selection, population size, and the colonization of new environments. The demographic histories of island populations can be reconstructed from patterns of genetic diversity. House mice (Mus musculus) inhabit islands throughout the globe, making them an attractive system for studying island colonization from a genetic perspective. Gough Island, in the central South Atlantic Ocean, is one of the remotest islands in the world. House mice were introduced to Gough Island by sealers during the 19th century, and display unusual phenotypes, including exceptionally large body size and carnivorous feeding behavior. We describe genetic variation in Gough Island mice using mitochondrial sequences, nuclear sequences, and microsatellites. Phylogenetic analysis of mitochondrial sequences suggested that Gough Island mice belong to Mus musculus domesticus, with the maternal lineage possibly originating in England or France. Cluster analyses of microsatellites revealed genetic membership for Gough Island mice in multiple coastal populations in Western Europe, suggesting admixed ancestry. Gough Island mice showed substantial reductions in mitochondrial and nuclear sequence variation and weak reductions in microsatellite diversity compared with Western European populations, consistent with a population bottleneck. Approximate Bayesian Computation (ABC) estimated that mice recently colonized Gough Island (~100 years ago) and experienced a 98% reduction in population size followed by a rapid expansion. Our results indicate that the unusual phenotypes of Gough Island mice evolved rapidly, positioning these mice as useful models for understanding rapid phenotypic evolution. This article is protected by copyright. All rights reserved.
    Molecular Ecology 03/2014; 23(1923):1939. · 5.84 Impact Factor
  • Amir Mor, Michael A White, Beatriz Ma Fontoura
    [Show abstract] [Hide abstract]
    ABSTRACT: In eukaryotic cells, the cytoplasm and the nucleus are separated by a double-membraned nuclear envelope (NE). Thus, transport of molecules between the nucleus and the cytoplasm occurs via gateways termed the nuclear pore complexes (NPCs), which are the largest intracellular channels in nature. While small molecules can passively translocate through the NPC, large molecules are actively imported into the nucleus by interacting with receptors that bind nuclear pore complex proteins (Nups). Regulatory factors then function in assembly and disassembly of transport complexes. Signaling pathways, cell cycle, pathogens, and other physiopathological conditions regulate various constituents of the nuclear transport machinery. Here, we will discuss several findings related to modulation of nuclear transport during physiological and pathological conditions, including tumorigenesis, viral infection, and congenital syndrome. We will also explore chemical biological approaches that are being used as probes to reveal new mechanisms that regulate nucleocytoplasmic trafficking and that are serving as starting points for drug development.
    Current opinion in cell biology 02/2014; 28C:28-35. · 14.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hybrid dysfunction, a common feature of reproductive barriers between species, is often caused by negative epistasis between loci ("Dobzhansky-Muller incompatibilities"). The nature and complexity of hybrid incompatibilities remain poorly understood because identifying interacting loci that affect complex phenotypes is difficult. With subspecies in the early stages of speciation, an array of genetic tools, and detailed knowledge of reproductive biology, house mice (Mus musculus) provide a model system for dissecting hybrid incompatibilities. Male hybrids between M. musculus subspecies often show reduced fertility. Previous studies identified loci and several X chromosome-autosome interactions that contribute to sterility. To characterize the genetic basis of hybrid sterility in detail, we used a systems genetics approach, integrating mapping of gene expression traits with sterility phenotypes and QTL. We measured genome-wide testis expression in 305 male F2s from a cross between wild-derived inbred strains of M. musculus musculus and M. m. domesticus. We identified several thousand cis- and trans-acting QTL contributing to expression variation (eQTL). Many trans eQTL cluster into eleven 'hotspots,' seven of which co-localize with QTL for sterility phenotypes identified in the cross. The number and clustering of trans eQTL-but not cis eQTL-were substantially lower when mapping was restricted to a 'fertile' subset of mice, providing evidence that trans eQTL hotspots are related to sterility. Functional annotation of transcripts with eQTL provides insights into the biological processes disrupted by sterility loci and guides prioritization of candidate genes. Using a conditional mapping approach, we identified eQTL dependent on interactions between loci, revealing a complex system of epistasis. Our results illuminate established patterns, including the role of the X chromosome in hybrid sterility. The integrated mapping approach we employed is applicable in a broad range of organisms and we advocate for widespread adoption of a network-centered approach in speciation genetics.
    PLoS Genetics 02/2014; 10(2):e1004162. · 8.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Context-specific molecular vulnerabilities that arise during tumor evolution represent an attractive intervention target class. However, the frequency and diversity of somatic lesions detected among lung tumors can confound efforts to identify these targets. To confront this challenge, we have applied parallel screening of chemical and genetic perturbations within a panel of molecularly annotated NSCLC lines to identify intervention opportunities tightly linked to molecular response indicators predictive of target sensitivity. Anchoring this analysis on a matched tumor/normal cell model from a lung adenocarcinoma patient identified three distinct target/response-indicator pairings that are represented with significant frequencies (6%-16%) in the patient population. These include NLRP3 mutation/inflammasome activation-dependent FLIP addiction, co-occurring KRAS and LKB1 mutation-driven COPI addiction, and selective sensitivity to a synthetic indolotriazine that is specified by a seven-gene expression signature. Target efficacies were validated in vivo, and mechanism-of-action studies informed generalizable principles underpinning cancer cell biology.
    Cell 10/2013; 155(3):552-66. · 31.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A challenge for biomedical research is the development of pharmaceuticals that appropriately target disease mechanisms. Natural products can be a rich source of bioactive chemicals for medicinal applications but can act through unknown mechanisms and can be difficult to produce or obtain. To address these challenges, we developed a new marine-derived, renewable natural products resource and a method for linking bioactive derivatives of this library to the proteins and biological processes that they target in cells. We used cell-based screening and computational analysis to match gene expression signatures produced by natural products to those produced by small interfering RNA (siRNA) and synthetic microRNA (miRNA) libraries. With this strategy, we matched proteins and miRNAs with diverse biological processes and also identified putative protein targets and mechanisms of action for several previously undescribed marine-derived natural products. We confirmed mechanistic relationships for selected siRNAs, miRNAs, and compounds with functional roles in autophagy, chemotaxis mediated by discoidin domain receptor 2, or activation of the kinase AKT. Thus, this approach may be an effective method for screening new drugs while simultaneously identifying their targets.
    Science Signaling 10/2013; 6(297):ra90. · 7.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Discoidin domain receptor 2 (DDR2) is a receptor tyrosine kinase involved in a variety of cellular response pathways, including regulation of cell growth, proliferation, and motility. Using a newly developed platform to identify the signaling pathway/molecular target of natural products, we identified a family of alkaloid natural products, discoipyrroles A-D (1-4), from Bacillus hunanensis that inhibit the DDR2 signaling pathway. The structure of 1-4, determined by detailed two-dimensional (2D) NMR methods and confirmed by X-ray crystallographic analysis has an unusual 3H-benzo[d]pyrrolo][1,3]oxazine-3,5-dione core. Discoipyrroles A-D potently inhibit DDR2 dependent migration of BR5 fibroblasts and show selective cytotoxicity to DDR2 mutant lung cancer cell lines (IC50 120-400 nM). Examination of the biosynthesis has led to the conclusion that the discoipyrroles are formed through a nonenzymatic process, leading to a one-pot total synthesis of 1.
    Journal of the American Chemical Society 08/2013; · 11.44 Impact Factor
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: High-throughput cell-based phenotypic screening has become an increasingly important technology for discovering new drug targets and assigning gene functions. Such experiments use hundreds of 96-well or 384-well plates, in order to cover whole-genome RNAi collections and/or chemical compound files, and often collect measurements that are sensitive to spatial background noise whose patterns can vary across individual plates. Correcting these position effects can substantially improve measurement accuracy and screening success. We developed SbacHTS (Spatial background noise correction for High-Throughput RNAi Screening) software for visualization, estimation and correction of spatial background noise in HT-RNAi screens. SbacHTS is supported on the Galaxy open source framework with a user-friendly open access web interface. We find that SbacHTS software can effectively detect and correct spatial background noise, increase signal to noise ratio and enhance statistical detection power in high-throughput RNAi screening experiments. http://www.galaxy.qbrc.org/
    Bioinformatics 06/2013; · 4.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent work has demonstrated that autophagy, a phylogenetically conserved, lysosome-mediated pathway of protein degradation, is a key participant in pathological cardiac remodeling. One common feature of cell growth and autophagy is membrane biogenesis and processing. The exocyst, an octomeric protein complex involved in vesicle trafficking, is implicated in numerous cellular processes, yet its role in cardiomyocyte plasticity is unknown. Here, we set out to explore the role of small G protein-dependent control of exocyst function and membrane trafficking in stress-induced cardiomyocyte remodeling and autophagy. First, we tested in cultured neonatal cardiomyocytes (NRCMs) two isoforms of Ral (RalA, RalB) whose actions are mediated by the exocyst. In these experiments, mTOR inhibition in response to starvation or Torin1 was preserved despite RalA or RalB knockdown; however, activation of autophagy was suppressed only in NRCMs depleted of RalB, implicating RalB as being required for mTOR-dependent cardiomyocyte autophagy. To define further the role of RalB in cardiomyocyte autophagy, we analyzed hearts from mice lacking RalGDS (Ralgds-/-), a guanine exchange factor (GEF) for the Ral family of small GTPases. RalGDS-null hearts were similar to wild-type (WT) littermates in terms of ventricular structure, contractile performance, and gene expression. However, Ralgds-/- hearts manifested a blunted growth response (p<0.05) to TAC-mediated pressure-overload stress. Ventricular chamber size and contractile performance were preserved in response to TAC in Ralgds-/- mice, and load-induced cardiomyocyte autophagy was suppressed. Interestingly, TAC-induced activation of the fetal gene program was similar in both genotypes despite the relative lack of hypertrophic growth in mutant hearts. Together, these data implicate RalGDS-mediated induction of autophagy and exocyst function as a critical feature of load-induced cardiac hypertrophy.
    Journal of Molecular and Cellular Cardiology 03/2013; · 5.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Growing numbers of studies employ cell line-based systematic short interfering RNA (siRNA) screens to study gene functions and to identify drug targets. As multiple sources of variations that are unique to siRNA screens exist, there is a growing demand for a computational tool that generates normalized values and standardized scores. However, only a few tools have been available so far with limited usability. Here, we present siMacro, a fast and easy-to-use Microsoft Office Excel-based tool with a graphic user interface, designed to process single-condition or two-condition synthetic screen datasets. siMacro normalizes position and batch effects, censors outlier samples, and calculates Z-scores and robust Z-scores, with a spreadsheet output of >120,000 samples in under 1 minute.
    Genomics & informatics. 03/2013; 11(1):55-7.
  • Hyun Seok Kim, John D Minna, Michael A White
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association studies (GWASs) have unraveled a large number of cancer risk alleles. Understanding how these allelic variants predispose to disease is a major bottleneck confronting translational application. In this issue, Li and colleagues combine GWASs with The Cancer Genome Atlas (TCGA) to disambiguate the contributions of germline and somatic variants to tumorigenic gene expression programs. They find that close to half of the known risk alleles for estrogen receptor (ER)-positive breast cancer are expression quantitative trait loci (eQTLs) acting upon major determinants of gene expression in tumors.
    Cell 01/2013; 152(3):387-9. · 31.96 Impact Factor
  • Brian O Bodemann, Michael A White
    [Show abstract] [Hide abstract]
    ABSTRACT: Rare codons selectively limit the accumulation of Ras family member proteins with important consequences for Ras pathway activation and tumorigenesis.
    Current biology: CB 01/2013; 23(1):R17-20. · 10.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recognition that Ral guanine nucleotide exchange factors (RalGEFs) are direct Ras effectors and that Ral G-protein activation is a direct consequence of Ras activation has spurred focused efforts to establish the contribution of RalGEF/Ral signaling to oncogenic transformation. Here, we provide a broad-strokes overview of the mechanistic organization of the RalGEF/Ral signaling network, evaluate the evidence for participation of this network in tumorigenic regulatory milieus, consider targeting strategies, and discuss the challenges to and opportunities for clinical development of these targeting strategies.
    The enzymes / edited by Paul D. Boyer. 01/2013; 34:137-56.
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this issue, Singer et al. (2012) reveal that the nucleoporin Nup98 supports adaptation to genotoxic stress by protecting specific p53-induced mRNAs from exosome-dependent degradation, suggesting that wild-type Nup98 may possess tumor suppressor function.
    Molecular cell 12/2012; 48(5):665-6. · 14.46 Impact Factor

Publication Stats

4k Citations
773.65 Total Impact Points


  • 1998–2015
    • University of Texas Southwestern Medical Center
      • • Department of Cell Biology
      • • Department of Biochemistry
      • • Department of Pharmacology
      Dallas, Texas, United States
  • 2009–2014
    • University of Wisconsin–Madison
      • Laboratory of Genetics
      Madison, Wisconsin, United States
    • Southern Methodist University
      • Department of Statistical Science
      Dallas, TX, United States
  • 2010
    • University of North Carolina at Chapel Hill
      • Department of Pharmacology
      Chapel Hill, NC, United States
  • 2005
    • Institut Curie
      Lutetia Parisorum, Île-de-France, France
    • University of Texas at Dallas
      Richardson, Texas, United States