Are you Marylene Rousseau?

Claim your profile

Publications (4)24.63 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The identification of somatic driver mutations in cancer has enabled therapeutic advances by identifying drug targets critical to disease causation. However, such genomic discoveries in oncology have not translated into advances for non-cancerous disease since point mutations in a single cell would be unlikely to cause non-malignant disease. An exception to this would occur if the mutation happened early enough in development to be present in a large percentage of a tissue's cellular population. We sought to identify the existence of somatic mutations occurring early in human development by ascertaining base-pair mutations present in one of a pair of monozygotic twins, but absent from the other and assessing evidence for mosaicism. To do so, we genome-wide genotyped 66 apparently healthy monozygotic adult twins at 506 786 high-quality single nucleotide polymorphisms (SNPs) in white blood cells. Discrepant SNPs were verified by Sanger sequencing and a selected subset was tested for mosaicism by targeted high-depth next-generation sequencing (20 000-fold coverage) as a surrogate marker of timing of the mutation. Two de novo somatic mutations were unequivocally confirmed to be present in white blood cells, resulting in a frequency of 1.2×10(-7) mutations per nucleotide. There was little evidence of mosaicism on high-depth next-generation sequencing, suggesting that these mutations occurred early in embryonic development. These findings provide direct evidence that early somatic point mutations do occur and can lead to differences in genomes between otherwise identical twins, suggesting a considerable burden of somatic mutations among the trillions of mitoses that occur over the human lifespan.
    Journal of Medical Genetics 10/2013; · 5.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The search for expression quantitative trait loci has traditionally centred entirely on the process of transcription, whereas variants with effects on messenger RNA translation have not been systematically studied. Here we present a high-throughput approach for measuring translational cis-regulation in the human genome. Using ribosomal association as proxy for translational efficiency of polymorphic messenger RNAs, we test the ratio of polysomal/non-polysomal messenger RNA level as a quantitative trait for association with single nucleotide polymorphisms on the same messenger RNA transcript. We identify one important ribosomal distribution effect, from rs1131017 in the 5'-untranslated region of RPS26, that is in high linkage disequilibrium with the 12q13 locus for susceptibility to type 1 diabetes. The effect on translation is confirmed at the protein level by quantitative western blots, both ex vivo and after in vitro translation. Our results are a proof-of-principle that allelic effects on translation can be detected at a transcriptome-wide scale.
    Nature Communications 07/2013; 4:2260. · 10.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: ZAC is a transcription factor and cofactor, a strong candidate for transient neonatal diabetes mellitus (TNDM). TNDM involves impaired beta-cell development and is probably due to a double dose of ZAC, which is normally expressed only from the paternal copy. ZAC and Zac1 (its mouse orthologue) are strongly expressed in the proliferating progenitor/stem cells in many systems and also in some differentiated sites in human and mouse, suggesting a dual role in cell proliferation and differentiation control. Little is known about its expression in developing pancreas, the organ affected in TNDM. In this study, we examined ZAC/Zac1 expression in developing mouse and human pancreas by real-time PCR and dual in situ hybridization and immunofluorescence. Overall pancreatic expression drastically declined during gestation and early post-natal life in the mouse, and between the second trimester and adult in the human. Zac1 was predominantly expressed in mesenchyme in the mouse embryo, while ZAC was specifically expressed in islets of the human fetus. Thus, ZAC/Zac1 may play different roles in mouse and human pancreas development. The specific expression of ZAC in the human fetal beta-cells supports it as the gene involved in TNDM and the different expression pattern of Zac1 in mice from human may explain the much milder phenotype in the mouse model of ZAC double dose.
    Journal of molecular histology 02/2011; 42(2):129-36. · 1.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Type 1 diabetes results from autoimmune destruction of the insulin-producing pancreatic beta cells. The insulin gene (INS) is also expressed in human thymus, an ectopic expression site likely involved in immune tolerance. The IDDM2 diabetes susceptibility locus maps to a minisatellite composed of a variable number of tandem repeats situated 0.5 kb upstream of INS. Chromosomes carrying the protective long INS variable number of tandem repeats alleles (class III) produce higher levels of thymic INS mRNA than those with the predisposing, short class I alleles. However, complete silencing of thymic INS transcripts from the class III chromosome was found in a small proportion of heterozygous human thymus samples. We hypothesized that the specific class III alleles found on these chromosomes silence rather than enhance thymic insulin expression. To test the prediction that these alleles are predisposing, we developed a DNA fingerprinting method for detecting two putative "silencing" alleles found in two thymus samples (S1, S2). In a set of 287 diabetic children and their parents we found 13 alleles matching the fingerprint of the S1 or S2 alleles. Of 18 possible transmissions, 12 of the S1-S2 alleles were transmitted to the diabetic offspring, a frequency of 0.67, significantly higher than the 0.38 seen in the remaining 142 class III alleles; P = 0.025. This confirms our prediction and represents an additional level of correlation between thymic insulin and diabetes susceptibility, which supports a thymic enhancer effect of the INS variable number of tandem repeats as the mechanism of IDDM2 and refines the contribution of IDDM2 genotyping to diabetes risk assessment.
    Journal of Clinical Endocrinology &amp Metabolism 09/2001; 86(8):3705-10. · 6.43 Impact Factor