Marjori Matzke

Academia Sinica, Taipei, Taipei, Taiwan

Are you Marjori Matzke?

Claim your profile

Publications (130)1118.71 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coconut palm (Cocos nucifera) is a symbol of the tropics and a source of numerous edible and nonedible products of economic value. Despite its nutritional and industrial significance, coconut remains under-represented in public repositories for genomic and transcriptomic data. Here we report de novo transcript assembly from RNA-seq data and analysis of gene expression in seed tissues (embryo and endosperm) and leaves of a dwarf coconut variety. Assembly of 10 GB sequencing data for each tissue resulted in 58,211 total unigenes in embryo; 61,152 in endosperm; and 33,446 in leaf. Within each unigene pool, 24,857 could be annotated in embryo, 29,731 in endosperm, and 26,064 in leaf. A KEGG analysis identified 138, 138, and 139 pathways, respectively, in transcriptomes of embryo, endosperm, and leaf tissues. Given the extraordinarily large size of coconut seeds and the importance of small RNA-mediated epigenetic regulation during seed development in model plants, we used homology searches to identify putative homologs of factors required for RNA-directed DNA methylation in coconut. The findings suggest that RNA-directed DNA methylation is important during coconut seed development, particularly in maturing endosperm. This dataset will expand the genomics resources available for coconut and provide a foundation for more detailed analyses that may assist molecular breeding strategies aimed at improving this major tropical crop.
    G3 (Bethesda, Md.). 09/2014;
  • Marjori A Matzke, Rebecca A Mosher
    [Show abstract] [Hide abstract]
    ABSTRACT: RNA-directed DNA methylation (RdDM) is the major small RNA-mediated epigenetic pathway in plants. RdDM requires a specialized transcriptional machinery that comprises two plant-specific RNA polymerases - Pol IV and Pol V - and a growing number of accessory proteins, the functions of which in the RdDM mechanism are only partially understood. Recent work has revealed variations in the canonical RdDM pathway and identified factors that recruit Pol IV and Pol V to specific target sequences. RdDM, which transcriptionally represses a subset of transposons and genes, is implicated in pathogen defence, stress responses and reproduction, as well as in interallelic and intercellular communication.
    Nature Reviews Genetics 05/2014; · 41.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Short interfering RNAs (siRNAs) homologous to transcriptional regulatory regions can induce RNA-directed DNA methylation (RdDM) and transcriptional gene silencing (TGS) of target genes. In our system, siRNAs are produced by transcribing an inverted DNA repeat (IR) of enhancer sequences, yielding a hairpin RNA that is processed by several Dicer activities into 21-24 nt siRNAs. Primarily 24 nt siRNAs trigger RdDM of the target enhancer in trans and TGS of a downstream GFP reporter gene. We analyzed siRNA accumulation from two different structural forms of a trans-silencer locus in which tandem repeats are embedded in the enhancer IR and distinguished distinct RNA polymerase II (Pol II) and Pol IV-dependent pathways of siRNA biogenesis. At the original silencer locus, Pol II transcription of the IR from a 35S promoter produces a hairpin RNA that is diced into abundant 21-24 nt siRNAs. A silencer variant lacking the 35S promoter revealed a normally masked Pol IV-dependent pathway that produces low levels of 24 nt siRNAs from the tandem repeats. Both pathways operate concurrently at the original silencer locus. siRNAs accrue only from specific regions of the enhancer and embedded tandem repeat. Analysis of these sequences and endogenous tandem repeats producing siRNAs revealed preferential accumulation of siRNAs at GC-rich regions containing methylated CG dinucleotides. In addition to supporting a correlation between base composition, DNA methylation and siRNA accumulation, our results highlight the complexity of siRNA biogenesis at repetitive loci and show that Pol II and Pol IV use different promoters to transcribe the same template.This article is protected by copyright. All rights reserved.
    The Plant Journal 05/2014; · 6.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RDM1 (RNA-DIRECTED DNA METHYLATION1) is a small plant-specific protein required for RNA-directed DNA methylation (RdDM). RDM1 interacts with RNA polymerase II (Pol II), ARGONAUTE4 (AGO4), and the de novo DNA methyltransferase DOMAINS REARRANGED METHYLTRANSFERASE2 (DRM2) and binds to methylated single stranded DNA. As the only protein identified so far that interacts directly with DRM2, RDM1 plays a pivotal role in the RdDM mechanism by linking the de novo DNA methyltransferase activity to AGO4, which binds short interfering RNAs (siRNAs) that presumably base-pair with Pol II or Pol V scaffold transcripts synthesized at target loci. RDM1 also acts together with the chromatin remodeler DEFECTIVE IN RNA-DIRECTED DNA METHYLATION1 (DRD1) and the structural-maintenance-of-chromosomes solo hinge protein DEFECTIVE IN MERISTEM SILENCING3 (DMS3) to form the DDR complex, which facilitates synthesis of Pol V scaffold transcripts. The manner in which RDM1 acts in both the DDR complex and as a factor bridging DRM2 and AGO4 remains unclear. RDM1 contains no known protein domains but a prior structural analysis suggested distinct regions that create a hydrophobic pocket and promote homodimer formation, respectively. We have tested several mutated forms of RDM1 altered in the predicted pocket and dimerization regions for their ability to complement defects in RdDM and transcriptional gene silencing, support synthesis of Pol V transcripts, form homodimers, and interact with DMS3. Our results indicate that the ability to form homodimers is essential for RDM1 to function fully in the RdDM pathway and may be particularly important during the de novo methylation step.
    PLoS ONE 01/2014; 9(2):e88190. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RNA-directed DNA methylation (RdDM) is an epigenetic process whereby small interfering RNAs (siRNAs) guide cytosine methylation of homologous DNA sequences. RdDM requires two specialized RNA polymerases: Pol IV transcribes the siRNA precursor whereas Pol V generates scaffold RNAs that interact with siRNAs and attract the methylation machinery. Recent evidence also suggests the involvement of RNA polymerase II (Pol II) in recruiting Pol IV and Pol V to low copy, intergenic loci. We demonstrated previously that Pol V-mediated methylation at a transgene locus in Arabidopsis spreads downstream of the originally targeted region by means of Pol IV/RNA-DEPENDENT RNA POLYMERASE2 (RDR2)-dependent 24-nt secondary siRNAs. Here we show that these secondary siRNAs can not only induce methylation in cis but also in trans at an unlinked target site, provided this sequence is transcribed by Pol II to produce a non-coding RNA. The Pol II transcript appears to be important for amplification of siRNAs at the unlinked target site because its presence correlates not only with methylation but also with elevated levels of 24-nt siRNAs. Potential target sites that lack an overlapping Pol II transcript and remain unmethylated in the presence of trans-acting 24-nt siRNAs can nevertheless acquire methylation in the presence of 21-24-nt hairpin-derived siRNAs, suggesting that RdDM of non-transcribed target sequences requires multiple size classes of siRNA. Our findings demonstrate that Pol II transcripts are not always needed for RdDM at low copy loci but they may intensify RdDM by facilitating amplification of Pol IV-dependent siRNAs at the DNA target site.
    Plant Molecular Biology 03/2013; · 3.52 Impact Factor
  • Source
    Ya-Yi Huang, Antonius J M Matzke, Marjori Matzke
    [Show abstract] [Hide abstract]
    ABSTRACT: Coconut, a member of the palm family (Arecaceae), is one of the most economically important trees used by mankind. Despite its diverse morphology, coconut is recognized taxonomically as only a single species (Cocos nucifera L.). There are two major coconut varieties, tall and dwarf, the latter of which displays traits resulting from selection by humans. We report here the complete chloroplast (cp) genome of a dwarf coconut plant, and describe the gene content and organization, inverted repeat fluctuations, repeated sequence structure, and occurrence of RNA editing. Phylogenetic relationships of monocots were inferred based on 47 chloroplast protein-coding genes. Potential nodes for events of gene duplication and pseudogenization related to inverted repeat fluctuation were mapped onto the tree using parsimony criteria. We compare our findings with those from other palm species for which complete cp genome sequences are available.
    PLoS ONE 01/2013; 8(8):e74736. · 3.53 Impact Factor
  • Source
    Antonius J M Matzke, Marjori Matzke
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetically encoded voltage-sensitive fluorescent proteins (VSFPs) are being used in neurobiology as non-invasive tools to study synchronous electrical activities in specific groups of nerve cells. Here we discuss our efforts to adapt this "light-based electrophysiology" for use in plant systems. We describe the production of transgenic plants engineered to express different versions of VSFPs that are targeted to the plasma membrane and internal membranes of root cells. The aim is to optically record concurrent changes in plasma membrane potential in populations of cells and at multiple membrane systems within single cells in response to various stimuli in living plants. Such coordinated electrical changes may globally orchestrate cell behavior to elicit successful reactions of the root as a whole to varying and unpredictable environments. Findings from membrane "potential-omics" can eventually be fused with data sets from other "omics" approaches to forge the integrated and comprehensive understanding that underpins the concept of systems biology.
    Frontiers in Plant Science 01/2013; 4:311. · 3.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: RNA-directed DNA methylation is a small RNA-mediated epigenetic modification that contributes to transcriptional silencing of transposons and repetitive sequences in plants. We have conducted several forward genetic screens to identify factors required for RNA-directed DNA methylation and transcriptional gene silencing in Arabidopsis thaliana. Here, we review the findings from these screens and report on two new mutants, dms12 and dms13, that are defective in Pol V-specific subunits NRPE5 and NRPE9b. Cumulative results from genetic screens performed in our laboratory and those of other investigators have revealed that RNA-directed DNA methylation requires a complex transcriptional machinery comprising a number of plant-specific factors, many of which were functionally uncharacterized before being implicated in this pathway. Future challenges include unraveling the detailed mechanism and full range of functions of RNA-directed DNA methylation.
    Cold Spring Harbor Symposia on Quantitative Biology 11/2012;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The dms4 (defective in meristem silencing 4) mutant of Arabidopsis thaliana is unique in having defects in both RNA-directed DNA methylation (RdDM) and plant development. DMS4 is an evolutionarily conserved, putative transcription factor of the Iwr1 (interacts with RNA polymerase II) type. DMS4 interacts with Pol II and also with RNA polymerases IV and V, which function in RdDM. Interactions with multiple polymerases may account for the diverse phenotypic effects of dms4 mutations. To dissect further the roles of DMS4 in RdDM and development, we performed a genetic suppressor screen using the dms4-1 allele, which contains in the sixth intron a splice site acceptor mutation that alters splicing and destroys the open reading frame. Following mutagenesis of dms4-1 seeds using ethyl methanesulfonate (EMS), we retrieved four dominant intragenic suppressor mutations that restored DMS4 function and wild-type phenotypes. Three of the four intragenic suppressor mutations created new splice site acceptors, which resulted in re-establishment of the wild-type open reading frame. Remarkably, the intragenic suppressor mutations were recovered at frequencies ranging from 35-150 times higher than expected for standard EMS mutagenesis in Arabidopsis. Whole genome sequencing did not reveal an elevated mutation frequency genome-wide indicating that the apparent hypermutation was confined to four specific sites in the dms4 gene. The localized high mutation frequency correlated with restoration of DMS4 function implies an efficient mechanism for targeted mutagenesis or selection of more fit revertant cells in the shoot apical meristem, thereby rapidly restoring a wild-type phenotype that is transmitted to future generations.
    Genetics 09/2012; · 4.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In plants, heterochromatin is maintained by a small RNA-based gene silencing mechanism known as RNA-directed DNA methylation (RdDM). RdDM requires the non-redundant functions of two plant-specific DNA-dependent RNA polymerases (RNAP), RNAP IV and RNAP V. RNAP IV plays a major role in siRNA biogenesis, while RNAP V may recruit DNA methylation machinery to target endogenous loci for silencing. Although small RNA-generating regions that are dependent on both RNAP IV and RNAP V have been identified previously, the genomic loci targeted by RNAP V for siRNA accumulation and silencing have not been described extensively. To characterize the RNAP V-dependent, heterochromatic siRNA-generating regions in the Arabidopsis genome, we deeply sequenced the small RNA populations of wild-type and RNAP V null mutant (nrpe1) plants. Our results showed that RNAP V-dependent siRNA-generating loci are associated predominately with short repetitive sequences in intergenic regions. Suppression of small RNA production from short repetitive sequences was also prominent in RdDM mutants including dms4, drd1, dms3 and rdm1, reflecting the known association of these RdDM effectors with RNAP V. The genomic regions targeted by RNAP V were small, with an estimated average length of 238 bp. Our results suggest that RNAP V affects siRNA production from genomic loci with features dissimilar to known RNAP IV-dependent loci. RNAP V, along with RNAP IV and DRM1/2, may target and silence a set of small, intergenic transposable elements located in dispersed genomic regions for silencing. Silencing at these loci may be actively reinforced by RdDM.
    Epigenetics: official journal of the DNA Methylation Society 07/2012; 7(7):781-95. · 4.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RNA-directed DNA methylation (RdDM) is a small interfering RNA (siRNA)-mediated epigenetic modification that contributes to transposon silencing in plants. RdDM requires a complex transcriptional machinery comprising two RNA polymerase II-related RNA polymerases, called Pol IV and Pol V, as well as chromatin remodelers, transcription factors, and other novel proteins whose roles in the RdDM mechanism remain poorly understood. We have identified a new component of the RdDM machinery, DMS11 (defective in meristem silencing 11), which has a GHKL (gyrase, Hsp90, histidine kinase, MutL) ATPase domain. siRNAs accumulate in the dms11 mutant, and repressive epigenetic modifications undergo only modest reductions at target sequences. DMS11 interacts physically with another RdDM component, DMS3, an unusual structural maintenance of chromosomes (SMC) hinge domain-containing protein that lacks the ATPase motifs of authentic SMC proteins. The hinge region of DMS3 resembles that of the mammalian epigenetic factor SMCHD1, which also has a GHKL-type ATPase. In vitro, DMS11 has ATPase activity that is stimulated by DMS3. We suggest that DMS11 provides the missing ATPase function for DMS3 and that these proteins cooperate in the RdDM pathway to promote transcriptional repression. GHKL ATPases are thus emerging as new players in epigenetic regulation in plants and mammals.
    Current biology: CB 05/2012; 22(10):933-8. · 10.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In plants, transposons and non-protein-coding repeats are epigenetically silenced by CG and non-CG methylation. This pattern of methylation is mediated in part by small RNAs and two specialized RNA polymerases, termed Pol IV and Pol V, in a process called RNA-directed DNA methylation. By contrast, many protein-coding genes transcribed by Pol II contain in their gene bodies exclusively CG methylation that is independent of small RNAs and Pol IV/Pol V activities. It is unclear how the different methylation machineries distinguish between transposons and genes. Here we report on a group of atypical genes that display in their coding region a transposon-like methylation pattern, which is associated with gene silencing in sporophytic tissues. We performed a methylation-sensitive amplification polymorphism analysis to search for targets of RNA-directed DNA methylation in Arabidopsis thaliana and identified several members of a gene family encoding cysteine-rich peptides (CRPs). In leaves, the CRP genes are silent and their coding regions contain dense, transposon-like methylation in CG, CHG and CHH contexts, which depends partly on the Pol IV/Pol V pathway and small RNAs. Methylation in the coding region is reduced, however, in the synergid cells of the female gametophyte, where the CRP genes are specifically expressed. Further demonstrating that expressed CRP genes lack gene body methylation, a CRP4-GFP fusion gene under the control of the constitutive 35 S promoter remains unmethylated in leaves and is transcribed to produce a translatable mRNA. By contrast, a CRP4-GFP fusion gene under the control of a CRP4 promoter fragment acquires CG and non-CG methylation in the CRP coding region in leaves similar to the silent endogenous CRP4 gene. Unlike CG methylation in gene bodies, which does not dramatically affect Pol II transcription, combined CG and non-CG methylation in CRP coding regions is likely to contribute to gene silencing in leaves because loss of this methylation in synergid cells is associated with CRP gene expression. We discuss this unusual methylation pattern and its alteration in synergid cells as well as the possible retrogene origin and evolutionary significance of CRP genes that are methylated like transposons.
    BMC Plant Biology 04/2012; 12:51. · 4.35 Impact Factor
  • Source
    Ian J Furner, Marjori Matzke
    [Show abstract] [Hide abstract]
    ABSTRACT: The primary sequence of the genome is broadly constant and superimposed upon that constancy is the postreplicative modification of a small number of cytosine residues to 5-methylcytosine. The pattern of methylation is non-random; some sequence contexts are frequently methylated and some rarely methylated and some regions of the genome are highly methylated and some rarely methylated. Once established, methylation is not static: it can potentially change in response to developmental or environmental cues and this may result in correlated changes in gene expression. Changes can occur passively owing to a failure to maintain DNA methylation through rounds of DNA replication, or actively, through the action of enzymes with DNA glycosylase activity. Recent advances in genetic analyses and the generation of high resolution, genome-wide methylation maps are revealing in unprecedented detail the patterns and dynamic changes of DNA methylation in plants.
    Current opinion in plant biology 04/2011; 14(2):137-41. · 10.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RNA-directed DNA methylation (RdDM) is a small interfering RNA (siRNA)-mediated epigenetic modification that contributes to transposon silencing in plants. RdDM requires a complex transcriptional machinery that includes specialized RNA polymerases, named Pol IV and Pol V, as well as chromatin remodelling proteins, transcription factors, RNA binding proteins, and other plant-specific proteins whose functions are not yet clarified. In Arabidopsis thaliana, DICER-LIKE3 and members of the ARGONAUTE4 group of ARGONAUTE (AGO) proteins are involved, respectively, in generating and using 24-nt siRNAs that trigger methylation and transcriptional gene silencing of homologous promoter sequences. AGO4 is the main AGO protein implicated in the RdDM pathway. Here we report the identification of the related AGO6 in a forward genetic screen for mutants defective in RdDM and transcriptional gene silencing in shoot and root apical meristems in Arabidopsis thaliana. The identification of AGO6, and not AGO4, in our screen is consistent with the primary expression of AGO6 in shoot and root growing points.
    PLoS ONE 01/2011; 6(10):e25730. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RNA-directed DNA methylation (RdDM) is a small RNA-mediated epigenetic modification in plants. We report here the identification of DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2) in a forward screen for mutants defective in RdDM in Arabidopsis thaliana. The finding of a mutation in the presumptive active site argues in favor of direct catalytic activity for DRM2.
    Genetics 01/2011; 187(3):977-9. · 4.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The nuclear envelope is increasingly viewed from an electrophysiological perspective by researchers interested in signal transduction pathways that influence gene transcription and other processes in the nucleus. Here, we describe evidence for ion channels and transporters in the nuclear membranes and for possible ion gating by the nuclear pores. We argue that a systems-level understanding of cellular regulation is likely to require the assimilation of nuclear electrophysiology into molecular and biochemical signaling pathways.
    Molecular Plant 07/2010; 3(4):642-52. · 6.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA methylation is an important epigenetic mark in many eukaryotes. In plants, 24-nucleotide small interfering RNAs (siRNAs) bound to the effector protein, Argonaute 4 (AGO4), can direct de novo DNA methylation by the methyltransferase DRM2 (refs 2, 4-6). Here we report a new regulator of RNA-directed DNA methylation (RdDM) in Arabidopsis: RDM1. Loss-of-function mutations in the RDM1 gene impair the accumulation of 24-nucleotide siRNAs, reduce DNA methylation, and release transcriptional gene silencing at RdDM target loci. RDM1 encodes a small protein that seems to bind single-stranded methyl DNA, and associates and co-localizes with RNA polymerase II (Pol II, also known as NRPB), AGO4 and DRM2 in the nucleus. Our results indicate that RDM1 is a component of the RdDM effector complex and may have a role in linking siRNA production with pre-existing or de novo cytosine methylation. Our results also indicate that, although RDM1 and Pol V (also known as NRPE) may function together at some RdDM target sites in the peri-nucleolar siRNA processing centre, Pol II rather than Pol V is associated with the RdDM effector complex at target sites in the nucleoplasm.
    Nature 05/2010; 465(7294):106-9. · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interphase chromosome organization and dynamics can be studied in living cells using fluorescent tagging techniques that exploit bacterial operator/repressor systems and auto-fluorescent proteins. A nuclear-localized Repressor Protein-Fluorescent Protein (RP-FP) fusion protein binds to operator repeats integrated as transgene arrays at defined locations in the genome. Under a fluorescence microscope, the tagged sites appear as bright fluorescent dots in living cells. This technique has been used successfully in plants, but is often hampered by low expression of genes encoding RP-FP fusion proteins, perhaps owing to one or more gene silencing mechanisms that are prevalent in plant cells. We used two approaches to overcome this problem. First, we tested mutations in four factors involved in different types of gene silencing and/or epigenetic modifications for their effects on nuclear fluorescence. Only mutations in DDM1, a chromatin remodelling ATPase involved in repeat-induced heterochromatin formation and DNA methylation, released silencing of the RP-FP fusion protein. This result suggested that the operator repeats can trigger silencing of the adjacent gene encoding the RP-FP fusion protein. In the second approach, we transformed the tagged lines with a second T-DNA encoding the RP-FP fusion protein but lacking operator repeats. This strategy avoided operator repeat-induced gene silencing and increased the number of interphase nuclei displaying fluorescent dots. In a further extension of the technique, we show that green fluorescent-tagged sites can be visualized on moving mitotic chromosomes stained with red fluorescent-labelled histone H2B. The results illustrate the propensity of operator repeat arrays to form heterochromatin that can silence the neighbouring gene encoding the RP-FP fusion protein. Supplying the RP-FP fusion protein in trans from a second T-DNA largely alleviates this problem. Depending on the promoter used to drive expression of the RP-FP fusion protein gene, the fluorescent tagged sites can be visualized at high frequency in different cell types. The ability to observe fluorescent dots on both interphase and mitotic chromosomes allows tagged sites to be tracked throughout the cell cycle. These improvements enhance the versatility of the fluorescent tagging technique for future studies of chromosome arrangement and dynamics in living plants.
    Plant Methods 01/2010; 6:2. · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RNA-directed DNA methylation (RdDM) in plants requires two RNA polymerase (Pol) II-related RNA polymerases, namely Pol IV and Pol V. A genetic screen designed to reveal factors that are important for RdDM in a developmental context in Arabidopsis identified DEFECTIVE IN MERISTEM SILENCING 4 (DMS4). Unlike other mutants defective in RdDM, dms4 mutants have a pleiotropic developmental phenotype. The DMS4 protein is similar to yeast IWR1 (interacts with RNA polymerase II), a conserved putative transcription factor that interacts with Pol II subunits. The DMS4 complementary DNA partly complements the K1 killer toxin hypersensitivity of a yeast iwr1 mutant, suggesting some functional conservation. In the transgenic system studied, mutations in DMS4 directly or indirectly affect Pol IV-dependent secondary short interfering RNAs, Pol V-mediated RdDM, Pol V-dependent synthesis of intergenic non-coding RNA and expression of many Pol II-driven genes. These data suggest that DMS4 might be a regulatory factor for several RNA polymerases, thus explaining its diverse roles in the plant.
    EMBO Reports 12/2009; 11(1):65-71. · 7.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous work has implicated two predicted ion channels in mediating perinuclear calcium spiking, which is essential for rhizobia-induced root nodule formation in legumes. A new study demonstrates that these ion channels are preferentially permeable to cations, such as potassium, and are located in the nuclear envelope. Here, we consider ways in which the ion channels influence perinuclear calcium spiking and discuss a potentially broader role for nuclear membrane ion channels in signal transduction in plants.
    Trends in Plant Science 06/2009; 14(6):295-8. · 11.81 Impact Factor

Publication Stats

10k Citations
1,118.71 Total Impact Points

Institutions

  • 2013
    • Academia Sinica
      • Institute of Plant and Microbial Biology
      Taipei, Taipei, Taiwan
  • 1986–2013
    • Austrian Academy of Sciences
      • • Gregor-Mendel-Institut für Molekulare Pflanzenbiologie (GMI)
      • • Institut für Molekulare Biotechnologie (IMBA)
      Mondsee, Upper Austria, Austria
  • 2011
    • University of Cambridge
      • Department of Genetics
      Cambridge, ENG, United Kingdom
  • 2004–2011
    • Gregor Mendel Institute of Molecular Plant Biology (GMI)
      Wien, Vienna, Austria
  • 2007
    • University of Leeds
      • Centre for Plant Sciences
      Leeds, ENG, United Kingdom
  • 2005
    • Georgia Institute of Technology
      • School of Biology
      Atlanta, GA, United States
  • 1999
    • National Institutes of Health
      • Laboratory of Molecular Biology
      Bethesda, MD, United States
  • 1996
    • Virginia Commonwealth University
      Richmond, Virginia, United States
  • 1986–1988
    • University of Vienna
      • Institut für Biologische Chemie
      Wien, Vienna, Austria