Marco Campos

Baylor College of Medicine, Houston, Texas, United States

Are you Marco Campos?

Claim your profile

Publications (4)27.37 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ABO blood groups are known to influence the plasma level of von Willebrand factor (VWF), but little is known about the relationship between ABO and coagulation factor VIII (FVIII). We analyzed the influence of ABO genotypes on VWF antigen, FVIII activity, and their quantitative relationship in 11,673 participants in the Atherosclerosis Risk in Communities (ARIC) study. VWF, FVIII, and FVIII/VWF levels varied significantly among O, A (A1 and A2), B and AB subjects, and the extent of which varied between Americans of European (EA) and African (AA) descent. We validated a strong influence of ABO blood type on VWF levels (15.2%), but also detected a direct ABO influence on FVIII activity (0.6%) and FVIII/VWF ratio (3.8%) after adjustment for VWF. We determined that FVIII activity changed 0.54% for every 1% change in VWF antigen level. This VWF-FVIII relationship differed between subjects with O and B blood types in EA, AA, and in male, but not female subjects. Variations in FVIII activity were primarily detected at low VWF levels. These new quantitative influences on VWF, FVIII and the FVIII/VWF ratio help understand how ABO genotypes differentially influence VWF, FVIII and their ratio, particularly in racial and gender specific manners.
    PLoS ONE 08/2015; 10(8):e0132626. DOI:10.1371/journal.pone.0132626 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The synthesis, secretion and clearance of von Willebrand factor (VWF) are regulated by genetic variations in coding and promoter regions of the VWF gene. We have previously identified 19 single nucleotide polymorphisms (SNPs), primarily in introns that are associated with VWF antigen levels in subjects of European descent. In this study, we conducted race by gender analyses to compare the association of VWF SNPs with VWF antigen among 10,434 healthy Americans of European (EA) or African (AA) descent from the Atherosclerosis Risk in Communities (ARIC) study. Among 75 SNPs analyzed, 13 and 10 SNPs were associated with VWF antigen levels in EA male and EA female subjects, respectively. However, only one SNP (RS1063857) was significantly associated with VWF antigen in AA females and none was in AA males. Haplotype analysis of the ARIC samples and studying racial diversities in the VWF gene from the 1000 genomes database suggest a greater degree of variations in the VWF gene in AA subjects as compared to EA subjects. Together, these data suggest potential race and gender divergence in regulating VWF expression by genetic variations.
    PLoS ONE 01/2014; 9(1):e84810. DOI:10.1371/journal.pone.0084810 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Factor VIII (FVIII) functions as a cofactor for factor IXa in the contact coagulation pathway and circulates in a protective complex with von Willebrand factor (VWF). Plasma FVIII activity is strongly influenced by environmental and genetic factors through VWF-dependent and -independent mechanisms. Single nucleotide polymorphisms (SNPs) of the coding and promoter sequence in the FVIII gene have been extensively studied for effects on FVIII synthesis, secretion, and activity, but impacts of non-disease-causing intronic SNPs remain largely unknown. We analyzed FVIII SNPs and FVIII activity in 10,434 healthy Americans of European (EA) or African (AA) descent in the Atherosclerosis Risk in Communities (ARIC) study. Among covariates, age, race, diabetes, and ABO contributed 2.2%, 3.5%, 4%, and 10.7% to FVIII intersubject variation, respectively. Four intronic FVIII SNPs associated with FVIII activity and 8 with FVIII-VWF ratio in a sex- and race-dependent manner. The FVIII haplotypes AT and GCTTTT also associated with FVIII activity. Seven VWF SNPs were associated with FVIII activity in EA subjects, but no FVIII SNPs were associated with VWF Ag. These data demonstrate that intronic SNPs could directly or indirectly influence intersubject variation of FVIII activity. Further investigation may reveal novel mechanisms of regulating FVIII expression and activity.
    Blood 01/2012; 119(8):1929-34. DOI:10.1182/blood-2011-10-383661 · 10.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: von Willebrand factor (VWF) is an essential component of hemostasis and has been implicated in thrombosis. Multimer size and the amount of circulating VWF are known to impact hemostatic function. We associated 78 VWF single nucleotide polymorphisms (SNPs) and haplotypes constructed from those SNPs with VWF antigen level in 7856 subjects of European descent. Among the nongenomic factors, age and body mass index contributed 4.8% and 1.6% of VWF variation, respectively. The SNP rs514659 (tags O blood type) contributed 15.4% of the variance. Among the VWF SNPs, we identified 18 SNPs that are associated with levels of VWF. The correlative SNPs are either intronic (89%) or silent exonic (11%). Although SNPs examined are distributed throughout the entire VWF gene without apparent cluster, all the positive SNPs are located in a 50-kb region. Exons in this region encode for VWF D2, D', and D3 domains that are known to regulate VWF multimerization and storage. Mutations in the D3 domain are also associated with von Willebrand disease. Fifteen of these 18 correlative SNPs are in 2 distinct haplotype blocks. In summary, we identified a cluster of intronic VWF SNPs that associate with plasma levels of VWF, individually or additively, in a large cohort of healthy subjects.
    Blood 02/2011; 117(19):5224-30. DOI:10.1182/blood-2010-08-300152 · 10.45 Impact Factor

Publication Stats

36 Citations
27.37 Total Impact Points

Top Journals


  • 2011–2014
    • Baylor College of Medicine
      • • Section of Cardiology
      • • Department of Medicine
      Houston, Texas, United States