Marcus Cooper

Harvard Medical School, Boston, MA, United States

Are you Marcus Cooper?

Claim your profile

Publications (3)47.9 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ischaemia of the heart, brain and limbs is a leading cause of morbidity and mortality worldwide. Hypoxia stimulates the secretion of vascular endothelial growth factor (VEGF) and other angiogenic factors, leading to neovascularization and protection against ischaemic injury. Here we show that the transcriptional coactivator PGC-1alpha (peroxisome-proliferator-activated receptor-gamma coactivator-1alpha), a potent metabolic sensor and regulator, is induced by a lack of nutrients and oxygen, and PGC-1alpha powerfully regulates VEGF expression and angiogenesis in cultured muscle cells and skeletal muscle in vivo. PGC-1alpha-/- mice show a striking failure to reconstitute blood flow in a normal manner to the limb after an ischaemic insult, whereas transgenic expression of PGC-1alpha in skeletal muscle is protective. Surprisingly, the induction of VEGF by PGC-1alpha does not involve the canonical hypoxia response pathway and hypoxia inducible factor (HIF). Instead, PGC-1alpha coactivates the orphan nuclear receptor ERR-alpha (oestrogen-related receptor-alpha) on conserved binding sites found in the promoter and in a cluster within the first intron of the VEGF gene. Thus, PGC-1alpha and ERR-alpha, major regulators of mitochondrial function in response to exercise and other stimuli, also control a novel angiogenic pathway that delivers needed oxygen and substrates. PGC-1alpha may provide a novel therapeutic target for treating ischaemic diseases.
    Nature 03/2008; 451(7181):1008-12. · 38.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) is a transcriptional coactivator involved in several aspects of energy metabolism. It is induced or activated under different stimuli in a highly tissue-specific manner and subsequently partners with certain transcription factors in those tissues to execute various biological programs. In the fasted liver, PGC-1alpha is induced and interacts with hepatocyte nuclear factor 4alpha (HNF4alpha) and other transcription factors to activate gluconeogenesis and increase hepatic glucose output. Given the broad spectrum of liver genes responsive to HNF4alpha, we sought to determine those that were specifically targeted by the combination of PGC-1alpha and HNF4alpha. Coexpression of these two molecules in murine stem cells reveals a high induction of mRNA for apolipoproteins A-IV and C-II. Forced expression of PGC-1alpha in mouse and human hepatoma cells increases the mRNA of a subset of apolipoproteins implicated in very low density lipoprotein and triglyceride metabolism, including apolipoproteins A-IV, C-II, and C-III. Coactivation of the apoC-III/A-IV promoter region by PGC-1alpha occurs through a highly conserved HNF4alpha response element, the loss of which completely abolishes activation by PGC-1alpha and HNF4alpha. Adenoviral infusion of PGC-1alpha into live mice increases hepatic expression of apolipoproteins A-IV, C-II, and C-III and increases serum and very low density lipoprotein triglyceride levels. Conversely, knock down of PGC-1alpha in vivo causes a decrease in both apolipoprotein expression and serum triglyceride levels. These data point to a crucial role for the PGC-1alpha/HNF4alpha partnership in hepatic lipoprotein metabolism.
    Journal of Biological Chemistry 06/2006; 281(21):14683-90. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is a transcriptional coactivator involved in several aspects of energy metabolism. It is induced or activated under different stimuli in a highly tissue-specific manner and subsequently partners with certain transcription factors in those tissues to execute various biological programs. In the fasted liver, PGC-1α is induced and interacts with hepatocyte nuclear factor 4α (HNF4α) and other transcription factors to activate gluconeogenesis and increase hepatic glucose output. Given the broad spectrum of liver genes responsive to HNF4α, we sought to determine those that were specifically targeted by the combination of PGC-1α and HNF4α. Coexpression of these two molecules in murine stem cells reveals a high induction of mRNA for apolipoproteins A-IV and C-II. Forced expression of PGC-1α in mouse and human hepatoma cells increases the mRNA of a subset of apolipoproteins implicated in very low density lipoprotein and triglyceride metabolism, including apolipoproteins A-IV, C-II, and C-III. Coactivation of the apoC-III/A-IV promoter region by PGC-1α occurs through a highly conserved HNF4α response element, the loss of which completely abolishes activation by PGC-1α and HNF4α. Adenoviral infusion of PGC-1α into live mice increases hepatic expression of apolipoproteins A-IV, C-II, and C-III and increases serum and very low density lipoprotein triglyceride levels. Conversely, knock down of PGC-1α in vivo causes a decrease in both apolipoprotein expression and serum triglyceride levels. These data point to a crucial role for the PGC-1α/HNF4α partnership in hepatic lipoprotein metabolism.
    Journal of Biological Chemistry 05/2006; 281(21):14683-14690. · 4.65 Impact Factor

Publication Stats

344 Citations
47.90 Total Impact Points

Institutions

  • 2006–2008
    • Harvard Medical School
      • • Department of Surgery
      • • Department of Cell Biology
      Boston, MA, United States