Liting Tian

Fudan University, Shanghai, Shanghai Shi, China

Are you Liting Tian?

Claim your profile

Publications (4)13.03 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Blood lead concentration (B-Pb), the main biomarker of lead exposure and risk, is curvi-linearily related to exposure. We assessed plasma lead (P-Pb) as a marker for both lead exposure and toxic effects. We examined claims that δ-aminolevulinic acid dehydratase genotype (ALAD) can modify lead toxicity. In 290 lead-exposed and 91 unexposed Chinese workers, we determined P-Pb, B-Pb, urinary lead (U-Pb), ALAD polymorphism (rs 1800435, ALAD1/2; TaqMan assay), and also toxic effects on heme synthesis (blood zinc protoporphyrin and hemoglobin, urinary δ-aminolevulic acid), on the kidneys (urinary albumin, β2-microglobulin and N-acetyl-β-D-glucosaminidase) and on the peripheral nervous system (sensory and motor conduction velocities). In exposed workers, median P-Pb was 4.10 (range 0.35-27) μg/L, B-Pb 401 (110-950) μg/L, and U-Pb 188 (22-590) μg/g creatinine. P-Pb had a higher ratio between exposed and unexposed workers (median 39, range 18-110) than B-Pb (19, 15-36; p<0.001) and U-Pb (28, 15-36; p<0.001). All three biomarkers were associated with all toxic effects (P-Pb: rS=-0.10-0.79; B-Pb: rS=-0.08-0.75; all p<0.05). In the exposed workers, B-Pb and U-Pb were significantly higher (p=0.04) in ALAD2 carriers (7% in the exposed population) than in ALAD1 homozygotes. P-Pb values were similar; ALAD1 homozygotes suffered higher kidney toxicity at the same P-Pb. (i) P-Pb has advantages over B-Pb as a biomarker of high Pb exposure, but it was not significantly better as an index of risk of toxicity. (ii) The ALAD genotype modifies toxicokinetics and toxicodynamics.
    Toxicology Letters 06/2013; · 3.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVES: Cadmium (Cd) toxicity of the kidney varies between individuals despite similar exposure levels. In humans Cd is mainly bound to metallothioneins (MT), which scavenge its toxic effects. Here we analyzed whether polymorphisms in MT genes MT1A and MT2A influence Cd-related kidney damage. METHODS: In a cross-sectional study N=512 volunteers were selected from three areas in South-Eastern China, which to varying degree were Cd-polluted from a smelter (control area [median Cd in urine U-Cd=2.67μg/L], moderately [U-Cd=4.23μg/L] and highly [U-Cd=9.13μg/L] polluted areas). U-Cd and blood Cd (B-Cd) concentrations were measured by graphite-furnace atomic absorption spectrometry. MT1A rs11076161 (G/A), MT2A rs10636 (G/C) and MT2A rs28366003 (A/G) were determined by Taqman assays; urinary N-Acetyl-beta-(D)-Glucosaminidase (UNAG) by spectrometry, and urinary β2-microglobulin (UB2M) by ELISA. RESULTS: Higher B-Cd (natural log-transformed) with increasing number of MT1A rs11076161 A-alleles was found in the highly polluted group (p-value trend=0.033; all p-values adjusted for age, sex, and smoking). In a linear model a significant interaction between rs11076161 genotype and B-Cd was found for UNAG (p=0.001) and UB2M concentrations (p=0.001). Carriers of the rs11076161 AA genotype showed steeper slopes for the associations between Cd in blood and natural log-transformed UB2M (β=1.2, 95% CI 0.72-1.6) compared to GG carriers (β=0.30, 95% CI 0.15-0.45). Also for UNAG (natural log-transformed) carriers of the AA genotype had steeper slopes (β=0.55, 95% CI 0.27-0.84) compared to GG carriers (β=0.018, 95% CI -0.79-0.11). CONCLUSIONS: MT1A rs11076161 was associated with B-Cd concentrations and Cd-induced kidney toxicity at high exposure levels.
    Toxicology and Applied Pharmacology 09/2012; · 3.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cadmium (Cd) effect on bone varies between individuals. We investigated whether genetic variation in metallothionein (MT)1A and MT2A associated with Cd induced bone loss in this study. A total of 465 persons (311 women and 154 men), living in control, moderately and heavily polluted areas, participated. The participants completed a questionnaire and the bone mineral density (BMD) was measured by dual energy x-ray absorptiometry (DXA) at the proximal radius and ulna. Samples of urine and blood were collected for determination of Cd in urine (UCd) and blood (BCd). Genotypes for polymorphisms in MT1A (rs11076161) and MT2A (rs10636) were determined by Taqman allelic discrimination assays. BCd had a weak association with variant alleles for MT1A (rs11076161) and MT2A (rs10636) in female living in the highly polluted group (p=0.08 and 0.05, respectively). A weak association was found between bone mineral density and MT2A polymorphisms variation (p=0.06) in female living in the highly polluted group. Only a weak association was found between bone mineral density and MT1A polymorphisms variation in female. Genetic variation in the MT1A and MT2A genes may not associate with bone loss caused by cadmium exposure.
    Science of The Total Environment 03/2012; 423:12-7. · 3.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is a wide variation in sensitivity to lead (Pb) exposure, which may be due to genetic susceptibility towards Pb. We investigated whether a polymorphism (rs1800435) in the δ-aminolevulinic acid dehydratase (ALAD) gene affected the toxicokinetics and toxicodynamics of Pb. Among 461 Chinese Pb-exposed storage battery and 175 unexposed workers, allele frequencies for the ALAD1 and ALAD2 alleles were 0.968 and 0.032, respectively. The Pb-exposed workers had a higher fraction of the ALAD1-2/2-2 genotype than unexposed workers (7.8% vs. 2.3%, p=0.01). The Pb levels in blood (B-Pb) and urine (U-Pb) were higher in Pb-exposed workers carrying the ALAD2 allele compared to homozygotes for ALAD1 (median B-Pb: 606 vs. 499 μg/L; U-Pb: 233 vs. 164 μg/g creatinine), while there was no statistically significant difference in the unexposed controls (median: 24 vs. 37 μg/L, and 3.9 vs. 6.4μg/g creatinine, respectively). High B-Pb and U-Pb were associated with statistically significantly lower sensory and motor conduction velocities in the median, ulnar and peroneal nerves. At the same B-Pb and U-Pb, ALAD1 homozygotes had lower conduction velocities than the ALAD2 carriers. There were similar trends for toxic effects on haem synthesis (zinc protoporphyrin and haemoglobin in blood) and renal function (albumin and N-acetyl-d-β-acetylglucosaminidase in urine), but without statistical significance. There was no difference in Pb toxicokinetics and toxicodynamics associated with VDR BsmI polymorphism. Our results show that the ALAD genotype modifies the relationship between Pb and its toxic effects on the peripheral nervous system. This must be considered in the assessment of risks at Pb exposure.
    NeuroToxicology 03/2011; 32(4):374-82. · 2.65 Impact Factor