Laura Martínez

Instituto de Investigaciones Biomedicas de Barcelona, Barcino, Catalonia, Spain

Are you Laura Martínez?

Claim your profile

Publications (7)41.31 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Acid sphingomyelinase (ASMase) is activated in nonalcoholic steatohepatitis (NASH). However, ASMase's contribution to NASH is poorly understood and limited to hepatic steatosis and glucose metabolism. Here we examined ASMase's role in high fat diet (HFD)-induced NASH.
    Journal of hepatology. 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Disrupted cholesterol homeostasis has been reported in Alzheimer disease and is thought to contribute to disease progression by promoting amyloid β (Aβ) accumulation. In particular, mitochondrial cholesterol enrichment has been shown to be sensitized to Aβ-induced neurotoxicity. However, the molecular mechanisms responsible for the increased cholesterol levels and its trafficking to mitochondria in Alzheimer disease remain poorly understood. Here, we show that endoplasmic reticulum (ER) stress triggered by Aβ promotes cholesterol synthesis and mitochondrial cholesterol influx, resulting in mitochondrial glutathione (GSH) depletion in old amyloid precursor protein/presenilin-1 (APP/PS1) mice. Mitochondrial cholesterol accumulation was associated with increased expression of mitochondrial-associated ER membrane proteins, which favor cholesterol translocation from ER to mitochondria along with specific cholesterol carriers, particularly the steroidogenic acute regulatory protein. In vivo treatment with the ER stress inhibitor 4-phenylbutyric acid prevented mitochondrial cholesterol loading and mitochondrial GSH depletion, thereby protecting APP/PS1 mice against Aβ-induced neurotoxicity. Similar protection was observed with GSH ethyl ester administration, which replenishes mitochondrial GSH without affecting the unfolded protein response, thus positioning mitochondrial GSH H depletion downstream of ER stress. Overall, these results indicate that Aβ-mediated ER stress and increased mitochondrial cholesterol trafficking contribute to the pathologic progression observed in old APP/PS1 mice, and that ER stress inhibitors may be explored as therapeutic agents for Alzheimer disease.
    American Journal Of Pathology 05/2014; · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND & AIMS: The pathogenesis of alcohol-induced liver disease (ALD) is poorly understood. Here, we examined the role of acid sphingomyelinase (ASMase) in alcohol induced hepatic endoplasmic reticulum (ER) stress, a key mechanism of ALD. METHODS: We examined ER stress, lipogenesis, hyperhomocysteinemia, mitochondrial cholesterol (mChol) trafficking and susceptibility to LPS and concanavalin-A in ASMase(-/-) mice fed alcohol. RESULTS: Alcohol feeding increased SREBP-1c, DGAT-2 and FAS mRNA in ASMase(+/+) but not in ASMase(-/-) mice. Compared to ASMase(+/+) mice, ASMase(-/-) mice exhibited decreased expression of ER stress markers induced by alcohol, but the level of tunicamycin-mediated upregulation of ER stress markers and steatosis was similar in both types of mice. The increase in homocysteine levels induced by alcohol feeding was comparable in both ASMase(+/+) mice and ASMase(-/-) mice. Exogenous ASMase, but not neutral SMase, induced ER stress by perturbing ER Ca(2+) homeostasis. Moreover, alcohol-induced mChol loading and StARD1 overexpression were blunted in ASMase(-/-) mice. Tunicamycin upregulated StARD1 expression and this outcome was abrogated by tauroursodeoxycholic acid. Alcohol-induced liver injury and sensitization to LPS and concanavalin-A were prevented in ASMase(-/-) mice. These effects were reproduced in alcohol-fed TNFR1/R2(-/-) mice. Moreover, ASMase does not impair hepatic regeneration following partial hepatectomy. Of relevance, liver samples from patients with alcoholic hepatitis exhibited increased expression of ASMase, StARD1 and ER stress markers. CONCLUSION: Our data indicate that ASMase is critical for alcohol-induced ER stress, and provide a rationale for further clinical investigation in ALD.
    Journal of Hepatology 05/2013; · 9.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Current evidence indicates that excess brain cholesterol regulates amyloid-β (Aβ) deposition, which in turn can regulate cholesterol homeostasis. Moreover, Aβ neurotoxicity is potentiated, in part, by mitochondrial glutathione (mGSH) depletion. To better understand the relationship between alterations in cholesterol homeostasis and Alzheimer's disease (AD), we generated a triple transgenic mice featuring sterol regulatory element-binding protein-2 (SREBP-2) overexpression in combination with APPswe/PS1ΔE9 mutations (APP/PS1) to examine key biochemical and functional characteristics of AD. Unlike APP/PS1 mice, APP/PS1/SREBP-2 mice exhibited early mitochondrial cholesterol loading and mGSH depletion. Moreover, β-secretase activation and Aβ accumulation, correlating with oxidative damage and neuroinflammation, were accelerated in APP/PS1/SREBP-2 mice compared to APP/PS1 mice. Triple transgenic mice displayed increased synaptotoxicity reflected by loss of synaptophysin and neuronal death, resulting in early object-recognition memory impairment associated with deficits in spatial memory. Interestingly, tau pathology was present in APP/PS1/SREBP-2 mice, manifested by increased tau hyperphosphorylation and cleavage, activation of tau kinases and neurofibrillary tangle formation without expression of mutated tau. Importantly, in vivo treatment with the cell permeable GSH ethyl ester, which restored mGSH levels in APP/PS1/SREBP-2 mice, partially prevented the activation of tau kinases, reduced abnormal tau aggregation and Aβ deposition, resulting in attenuated synaptic degeneration. Taken together, these results show that cholesterol-mediated mGSH depletion is a key event in AD progression, accelerating the onset of key neuropathological hallmarks of the disease. Thus, therapeutic approaches to recover mGSH may represent a relevant strategy in the treatment of AD.
    Human Molecular Genetics 05/2013; · 7.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Liver steatosis enhances ischemia/reperfusion (I/R) injury and is considered a primary factor in graft failure after liver transplantation. Although previous reports have shown a role for qualitative steatosis (macrovesicular vs. microvesicular) in hepatic I/R injury, no studies have compared side by side the specific contribution of individual lipids accumulating in fatty liver to I/R damage. We used nutritional and genetic models of micro and macrovesicular fatty livers exhibiting specific lipid profiles to assess their susceptibility to normothermic I/R injury. Unlike choline-deficient (CD) diet-fed mice, characterized by predominant liver triglycerides/free fatty acids (TG/FFA) accumulation, mice fed a cholesterol-enriched (HC) diet, which exhibited enhanced hepatic cholesterol loading in mitochondria, were highly sensitive to I/R-induced liver injury. In vivo two-photon confocal imaging revealed enhanced mitochondrial depolarization and generation of reactive oxygen species following hepatic I/R in HC-fed but not in CD-fed mice, consistent with decreased mitochondrial GSH (mGSH) observed in HC-fed mice. Moreover, ob/ob mice, characterized by increased hepatic TG, FFA, and cholesterol levels, were as sensitive to I/R-mediated liver injury as mice fed the HC diet. Livers from ob/ob mice displayed increased StAR expression and mitochondrial cholesterol accumulation, resulting in mGSH depletion. Interestingly, atorvastatin therapy or squalene synthase inhibition in vivo attenuated StAR overexpression, mitochondrial cholesterol loading, and mGSH depletion, protecting ob/ob mice from I/R-mediated liver injury. Cholesterol accumulation, particularly in mitochondria, sensitizes to hepatic I/R injury, and thus represents a novel target to prevent the enhanced damage of steatotic livers to I/R-mediated damage.
    Journal of Hepatology 10/2010; 54(5):1002-10. · 9.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The pathogenesis and treatment of nonalcoholic steatohepatitis (NASH) are not well established. Feeding a diet deficient in both methionine and choline (MCD) is one of the most common models of NASH, which is characterized by steatosis, mitochondrial dysfunction, hepatocellular injury, oxidative stress, inflammation, and fibrosis. However, the individual contribution of the lack of methionine and choline in liver steatosis, advanced pathology and impact on mitochondrial S-adenosyl-L-methionine (SAM) and glutathione (GSH), known regulators of disease progression, has not been specifically addressed. Here, we examined the regulation of mitochondrial SAM and GSH and signs of disease in mice fed a MCD, methionine-deficient (MD), or choline-deficient (CD) diet. The MD diet reproduced most of the deleterious effects of MCD feeding, including weight loss, hepatocellular injury, oxidative stress, inflammation, and fibrosis, whereas CD feeding was mainly responsible for steatosis, characterized by triglycerides and free fatty acids accumulation. These findings were preceded by MCD- or MD-mediated SAM and GSH depletion in mitochondria due to decreased mitochondrial membrane fluidity associated with a lower phosphatidylcholine/phosphatidylethanolamine ratio. MCD and MD but not CD feeding resulted in increased ceramide levels by acid sphingomyelinase. Moreover, GSH ethyl ester or SAM therapy restored mitochondrial GSH and ameliorated hepatocellular injury in mice fed a MCD or MD diet. Thus, the depletion of SAM and GSH in mitochondria is an early event in the MCD model of NASH, which is determined by the lack of methionine. Moreover, therapy using permeable GSH prodrugs may be of relevance in NASH.
    Journal of Biological Chemistry 06/2010; 285(24):18528-36. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The pathogenesis and treatment of nonalcoholic steatohepatitis (NASH) are not well established. Feeding a diet deficient in both methionine and choline (MCD) is one of the most common models of NASH, which is characterized by steatosis, mitochondrial dysfunction, hepatocellular injury, oxidative stress, inflammation, and fibrosis. However, the individual contribution of the lack of methionine and choline in liver steatosis, advanced pathology and impact on mitochondrial S-adenosyl-l-methionine (SAM) and glutathione (GSH), known regulators of disease progression, has not been specifically addressed. Here, we examined the regulation of mitochondrial SAM and GSH and signs of disease in mice fed a MCD, methionine-deficient (MD), or choline-deficient (CD) diet. The MD diet reproduced most of the deleterious effects of MCD feeding, including weight loss, hepatocellular injury, oxidative stress, inflammation, and fibrosis, whereas CD feeding was mainly responsible for steatosis, characterized by triglycerides and free fatty acids accumulation. These findings were preceded by MCD- or MD-mediated SAM and GSH depletion in mitochondria due to decreased mitochondrial membrane fluidity associated with a lower phosphatidylcholine/phosphatidylethanolamine ratio. MCD and MD but not CD feeding resulted in increased ceramide levels by acid sphingomyelinase. Moreover, GSH ethyl ester or SAM therapy restored mitochondrial GSH and ameliorated hepatocellular injury in mice fed a MCD or MD diet. Thus, the depletion of SAM and GSH in mitochondria is an early event in the MCD model of NASH, which is determined by the lack of methionine. Moreover, therapy using permeable GSH prodrugs may be of relevance in NASH.
    Journal of Biological Chemistry 06/2010; 285(24):18528-18536. · 4.65 Impact Factor