Laura E Macconaill

Brigham and Women's Hospital, Boston, Massachusetts, United States

Are you Laura E Macconaill?

Claim your profile

Publications (52)496.99 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Low-grade serous ovarian carcinomas (LGSC) are Ras-pathway mutated, TP53 wild-type, and frequently associated with borderline tumors. LGSC patients respond poorly to platinum-based chemotherapy and may benefit from pathway-targeted agents. High-grade serous carcinomas (HGSC) are TP53-mutated and are thought to be rarely associated with borderline tumors. We sought to determine whether borderline histology associated with Grade-2 or -3 carcinoma was an indicator of Ras mutation, and explored the molecular relationship between co-existing invasive and borderline histologies. Experimental Design: We reviewed >1200 patients and identified 102 serous carcinomas with adjacent borderline regions for analyses including candidate mutation screening, copy number and gene expression profiling. Results: We found a similar frequency of low, moderate and high-grade carcinomas with co-existing borderline histology. BRAF/KRAS alterations were common in LGSC, however, we also found recurrent NRAS mutations. Whereas borderline tumors harbored BRAF/KRAS mutations, NRAS mutations were restricted to carcinomas, representing the first example of a Ras oncogene with an obligatory association with invasive serous cancer. Co-existing borderline and invasive components showed near identical genomic profiles. Grade-2 cases with co-existing borderline included tumors with molecular features of LGSC, while others were typical of HGSC. However, all Grade-3 carcinomas with co-existing borderline histology were molecularly indistinguishable from typical HGSC. Conclusion: Our findings suggest NRAS is an oncogenic driver in serous ovarian tumors. We demonstrate that borderline histology is an unreliable predictor of Ras-pathway aberration and underscore an important role for molecular classification in identifying patients that may benefit from targeted agents.
    Clinical cancer research : an official journal of the American Association for Cancer Research. 10/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Port-wine stains (PWSs) are common congenital cutaneous capillary malformations. A somatic GNAQ mutation was recently identified in patients with sporadic PWSs and Sturge-Weber syndrome. However, subsequent studies to confirm or extend this observation are lacking.
    JAMA Dermatology 09/2014; · 4.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Müllerian Adenosarcoma (MA) is a rare mixed mesenchymal tumor of the female genital tract, composed of malignant stroma and benign-appearing epithelium. Sarcomatous overgrowth (SO) is the only established histological variable associated with higher stage and shorter survival. Specific molecular or immunohistochemistry (IHC) tools for the diagnosis of MA are lacking. Our goal was to study genomic mutations and copy number variations (CNVs) in MA to understand better its pathobiology, and develop specific diagnostic and prognostic tools. DNA was extracted from 20 samples of MA from 18 subjects (12 without SO and 6 with SO), including 2 in which areas of both typical MA histology and SO were independently tested. Samples were analyzed using a targeted next generation sequencing assay interrogating exonic sequences of 275 cancer genes for mutations and CNVs as well as 91 introns across 30 genes for cancer-associated rearrangements. The mean number of mutations in MA with SO (mean 9.7; range 3-14) did not differ significantly from MA without SO (mean 9.6; range 5-16). MA with SO had significantly higher mean numbers of gene level CNVs (24.6) compared to MA without SO (5; p = 0.0002). The most frequent amplification involved MDM2 and CDK4 (5/18; 28%), accompanied by focal CDK4 and MDM2 and diffuse HMGA2 expression using immunohistochemistry. MYBL1 amplification was seen in 4/18 (22%), predominantly in SO. Alterations in PIK3CA/AKT/PTEN pathway members were seen in 13/18 (72%). Notably, TP53 mutations were uncommon, present in only 2 cases with SO. 3/18 (17%) had mutations in ATRX, all associated with SO. No chromosomal rearrangements were identified. We have identified a number of recurrent genomic alterations in MA, including some associated with SO. Although further investigation of these findings is needed, confirmation of one or more may lead to new mechanistic insights and novel markers for this often difficult-to-diagnose tumor.
    The Journal of Pathology 09/2014; · 7.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ongoing cancer genome characterization studies continue to elucidate the spectrum of genomic abnormalities that drive many cancers, and in the clinical arena assessment of the driver genetic alterations in patients is playing an increasingly important diagnostic and/or prognostic role for many cancer types. However, the landscape of genomic abnormalities is still unknown for less common cancers, and the influence of specific genotypes on clinical behavior is often still unclear. To address some of these deficiencies, we developed Profile, a prospective cohort study to obtain genomic information on all patients at a large tertiary care medical center for cancer-related care. We enrolled patients with any cancer diagnosis, and, for each patient (unselected for cancer site or type) we applied mass spectrometric genotyping (OncoMap) of 471 common recurrent mutations in 41 cancer-related genes. We report the results of the first 5000 patients, of which 26% exhibited potentially actionable somatic mutations. These observations indicate the utility of genotyping in advancing the field of precision oncology.
    The Journal of molecular diagnostics: JMD 08/2014; · 3.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Myopericytoma (MPC) is a rare tumor with perivascular proliferation of pluripotent stem-cell-like pericytes. Although indolent, MPC may be locally aggressive with recurrent disease. The pathogenesis and diagnostic biomarkers of MPC are poorly understood. We discovered that 15% of benign MPCs (thyroid, skin; 3 of 20 samples) harbored BRAF(WT/V600E); 33.3% (1 of 3 samples) of BRAF(WT/V600E)-MPCs were multifocal/infiltrative/recurrent. Patient-MPC and primary MPC cells harbored BRAF(WT/V600E), were clonal and expressed pericytic-differentiation biomarkers crucial for its microenvironment. BRAF(WT/V600E)-positive thyroid MPC primary cells triggered in vitro (8.8-fold increase) and in vivo (3.6-fold increase) angiogenesis. Anti-BRAF(V600E) therapy with vemurafenib disrupted angiogenic and metabolic properties (~3-fold decrease) with down-regulation (~2.2-fold decrease) of some extracellular-matrix (ECM) factors and ECM-associated long non-coding RNA (LincRNA) expression, with no effects in BRAF(WT)-pericytes. Vemurafenib also inhibited (~3-fold decrease) cell viability in vitro and in BRAF(WT/V600E)-positive thyroid MPC patient-derived xenograft (PDX) mice (n = 5 mice per group). We established the first BRAF(WT/V600E)-dependent thyroid MPC cell culture. Our findings identify BRAF(WT/V600E) as a novel genetic aberration in MPC pathogenesis and MPC-associated biomarkers and imply that anti-BRAF(V600E) agents may be useful adjuvant therapy in BRAF(WT/V600E)-MPC patients. Patients with BRAF(WT/V600E)-MPC should be closely followed because of the risk for multifocality/recurrence.
    JNCI Journal of the National Cancer Institute 07/2014; · 14.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ERK signaling pathway is activated in Langerhans cell histiocytosis (LCH) histiocytes but only 60% of cases carry somatic activating mutations of BRAF. To identify other genetic causes of ERK pathway activation, we performed whole exome sequencing on purified LCH cells in three cases. One patient with wild type BRAF alleles in his histiocytes had compound mutations in the kinase domain of ARAF. Unlike wild type ARAF, this mutant was a highly active MEK kinase in vitro and was capable of transforming mouse embryo fibroblasts. Mutant ARAF activity was inhibited by vemurafenib, a BRAF inhibitor, indicating the importance of fully evaluating ERK pathway abnormalities in selecting LCH patients for targeted inhibitor therapy.
    Blood 03/2014; · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The molecular mechanisms underlying chordoma pathogenesis are unknown. We therefore sought to identify novel mutations to better understand chordoma biology and to potentially identify therapeutic targets. Given the relatively high costs of whole genome sequencing, we performed a focused genetic analysis using matrix-assisted laser desorption/ionization-time of flight mass spectrometer (Sequenom iPLEX genotyping). We tested 865 hotspot mutations in 111 oncogenes and selected tumor suppressor genes (OncoMap v. 3.0) of 45 human chordoma tumor samples. Of the analyzed samples, seven were identified with at least one mutation. Six of these were from fresh frozen samples, and one was from a paraffin embedded sample. These observations were validated using an independent platform using homogeneous mass extend MALDI-TOF (Sequenom hME Genotyping). These genetic alterations include: ALK (A877S), CTNNB1 (T41A), NRAS (Q61R), PIK3CA (E545K), PTEN (R130), CDKN2A (R58*), and SMARCB1 (R40*). This study reports on the largest comprehensive mutational analysis of chordomas performed to date. To focus on mutations that have the greatest chance of clinical relevance, we tested only oncogenes and tumor suppressor genes that have been previously implicated in the tumorigenesis of more common malignancies. We identified rare genetic changes that may have functional significance to the underlying biology and potential therapeutics for chordomas. Mutations in CDKN2A and PTEN occurred in areas of chromosomal copy loss. When this data is paired with the studies showing 18 of 21 chordoma samples displaying copy loss at the locus for CDKN2A, 17 of 21 chordoma samples displaying copy loss at PTEN, and 3 of 4 chordoma samples displaying deletion at the SMARCB1 locus, we can infer that a loss of heterozygosity at these three loci may play a significant role in chordoma pathogenesis.
    PLoS ONE 01/2014; 9(7):e101283. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The TP53 mutations have been proved to be predominated in ovarian cancer in a study from The Cancer Genome Atlas (TCGA). However, the molecular characteristics of recurrent ovarian cancers following initial treatment have been poorly estimated. This study was to investigate the pattern of somatic point mutations in matched paired samples of primary and recurrent epithelial ovarian cancers, using the OncoMap mutation detection protocol. We have adapted a high-throughput genotyping platform to determine the mutation status of a large panel of known cancer genes. OncoMap v.4.4 was used to evaluate genomic DNA isolated from a set of 92 formalin-fixed, paraffin-embedded (FFPE) tumors, consisting of matched paired samples of initially diagnosed and recurrent tumors from 46 epithelial ovarian cancer (EOC) patients. Mutations were observed in 33.7% of the samples, with 29.3% of these samples having a single mutation and the remaining 4.3% having two or more mutations. Among the 41 genes analyzed, 35 mutations were found in four genes, namely, CDKN2A (2.2%), KRAS (6.5%), MLH1 (8.2%) and TP53 (20.7%). TP53 was the most frequently mutated gene, but there was no correlation between the presence of mutation in any gene and clinical prognosis. Furthermore, somatic mutations did not differ between primary and recurrent ovarian carcinomas. Every mutation present in recurrent samples was detected in the corresponding primary sample. In conclusion, these OncoMap data of Korean EOC samples provide that somatic mutations were found in CDKN2A, KRAS, MLH1, and TP53. No differences in mutational status between primary and recurrent samples were detected. To understand the biology of tumor recurrence in epithelial ovarian cancer, more studies are necessary, including epigenetic modifications or additional mutations in other genes.
    PLoS ONE 01/2014; 9(6):e99451. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cervical cancer is the second leading cause of cancer deaths among women worldwide. The objective of this study was to describe the most common oncogenic mutations in cervical cancers and to explore genomic differences between the 2 most common histologic subtypes: adenocarcinoma and squamous cell carcinoma. A high-throughput genotyping platform, termed Oncomap, was used to interrogate 80 cervical tumors for 1250 known mutations in 139 cancer genes. Samples were analyzed using a mass spectrometry-based genotyping platform and were validated using orthogonal chemistry. Epidermal growth factor receptor (EGFR) mutations were further validated by massive parallel sequencing. Human papilloma virus (HPV) genotyping also was performed. Validated mutations were detected in 48 of 80 tumors (60%) examined. The highest mutation rates were in the genes phosphatidylinositol 3-kinase, catalytic subunit α (PIK3CA) (31.3%); Kirsten rat sarcoma viral oncogene homolog (KRAS) (8.8%); and EGFR (3.8%). PIK3CA mutation rates did not differ significantly between adenocarcinomas and squamous cell carcinomas (25% vs 37.5%, respectively; P = .33). In contrast, KRAS mutations were identified only in adenocarcinomas (17.5% vs 0%; P = .01), and a novel EGFR mutation was detected only in squamous cell carcinomas (0% vs 7.5%; P = .24). There were no associations between HPV-16 or HPV-18 and somatic mutations or overall survival. In adjusted analyses, PIK3CA mutations were associated with shorter survival (67.1 months vs 90.3 months; hazard ratio, 9.1; 95% confidence interval, 2.8-29.5 months; P < .001). Cervical cancers harbor high rates of potentially targetable oncogenic mutations. In addition, cervical squamous cell carcinoma and adenocarcinoma have distinct molecular profiles, suggesting that clinical outcomes may be improved with the use of more tailored treatment strategies, including PI3K and MEK inhibitors. Cancer 2013. © 2013 American Cancer Society.
    Cancer 08/2013; · 5.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ligand-independent, constitutive activation of Hedgehog signaling in mice expressing a mutant, activated SmoM2 allele results in the development of multifocal, highly differentiated tumors that express myogenic markers (including desmin, actin, MyoD and myogenin). The histopathology of these tumors, commonly classified as rhabdomyosarcomas, more closely resembles human fetal rhabdomyoma (FRM), a benign tumor that can be difficult to distinguish from highly differentiated rhabdomyosarcomas. We evaluated the spectrum of Hedgehog (HH) pathway gene mutations in a cohort of human FRM tumors by targeted Illumina sequencing and fluorescence in-situ hybridization testing for PTCH1. Our studies identified functionally relevant aberrations at the PTCH1 locus in 3 out of 5 FRM tumors surveyed, including a PTCH1 frameshift mutation in one tumor and homozygous deletions of PTCH1 in 2 tumors. These data suggest that activated Hedgehog signaling contributes to the biology of human FRM.
    The Journal of Pathology 06/2013; · 7.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pediatric low-grade gliomas (PLGGs) are among the most common solid tumors in children but, apart from BRAF kinase mutations or duplications in specific subclasses, few genetic driver events are known. Diffuse PLGGs comprise a set of uncommon subtypes that exhibit invasive growth and are therefore especially challenging clinically. We performed high-resolution copy-number analysis on 44 formalin-fixed, paraffin-embedded diffuse PLGGs to identify recurrent alterations. Diffuse PLGGs exhibited fewer such alterations than adult low-grade gliomas, but we identified several significantly recurrent events. The most significant event, 8q13.1 gain, was observed in 28% of diffuse astrocytoma grade IIs and resulted in partial duplication of the transcription factor MYBL1 with truncation of its C-terminal negative-regulatory domain. A similar recurrent deletion-truncation breakpoint was identified in two angiocentric gliomas in the related gene v-myb avian myeloblastosis viral oncogene homolog (MYB) on 6q23.3. Whole-genome sequencing of a MYBL1-rearranged diffuse astrocytoma grade II demonstrated MYBL1 tandem duplication and few other events. Truncated MYBL1 transcripts identified in this tumor induced anchorage-independent growth in 3T3 cells and tumor formation in nude mice. Truncated transcripts were also expressed in two additional tumors with MYBL1 partial duplication. Our results define clinically relevant molecular subclasses of diffuse PLGGs and highlight a potential role for the MYB family in the biology of low-grade gliomas.
    Proceedings of the National Academy of Sciences 04/2013; · 9.81 Impact Factor
  • Laura E Macconaill
    [Show abstract] [Hide abstract]
    ABSTRACT: Ongoing global genome characterization efforts are revolutionizing our knowledge of cancer genomics and tumor biology. In parallel, information gleaned from these studies on driver cancer gene alterations-mutations, copy number alterations, translocations, and/or chromosomal rearrangements-can be leveraged, in principle, to develop a cohesive framework for individualized cancer treatment. These possibilities have been enabled, to a large degree, by revolutionary advances in genomic technologies that facilitate systematic profiling for hallmark cancer genetic alterations at increasingly fine resolutions. Ongoing innovations in existing genomics technologies, as well as the many emerging technologies, will likely continue to advance translational cancer genomics and precision cancer medicine.
    Journal of Clinical Oncology 04/2013; · 18.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Meningiomas are the most common primary nervous system tumor. The tumor suppressor NF2 is disrupted in approximately half of all meningiomas, but the complete spectrum of genetic changes remains undefined. We performed whole-genome or whole-exome sequencing on 17 meningiomas and focused sequencing on an additional 48 tumors to identify and validate somatic genetic alterations. Most meningiomas had simple genomes, with fewer mutations, rearrangements and copy-number alterations than reported in other tumors in adults. However, several meningiomas harbored more complex patterns of copy-number changes and rearrangements, including one tumor with chromothripsis. We confirmed focal NF2 inactivation in 43% of tumors and found alterations in epigenetic modifiers in an additional 8% of tumors. A subset of meningiomas lacking NF2 alterations harbored recurrent oncogenic mutations in AKT1 (p.Glu17Lys) and SMO (p.Trp535Leu) and exhibited immunohistochemical evidence of activation of these pathways. These mutations were present in therapeutically challenging tumors of the skull base and higher grade. These results begin to define the spectrum of genetic alterations in meningiomas and identify potential therapeutic targets.
    Nature Genetics 01/2013; · 35.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been demonstrated for some cancers that the frequency of somatic oncogenic mutations may vary in ancestral populations. To determine whether key driver alterations might occur at different frequencies in colorectal cancer, we applied a high-throughput genotyping platform (OncoMap) to query 385 mutations across 33 known cancer genes in colorectal cancer DNA from 83 Asian, 149 Black and 195 White patients. We found that Asian patients had fewer canonical oncogenic mutations in the genes tested (60% vs Black 79% (P = 0.011) and White 77% (P = 0.015)), and that BRAF mutations occurred at a higher frequency in White patients (17% vs Asian 4% (P = 0.004) and Black 7% (P = 0.014)). These results suggest that the use of genomic approaches to elucidate the different ancestral determinants harbored by patient populations may help to more precisely and effectively treat colorectal cancer.
    PLoS ONE 01/2013; 8(9):e74950. · 3.53 Impact Factor
  • Laura E MacConaill
    [Show abstract] [Hide abstract]
    ABSTRACT: Although improvements in genomic technologies during the past decade have greatly advanced our understanding of the genomic alterations that contribute to lung cancer, and the disease has (to a degree) become a paradigm for individualized cancer treatment in solid tumors, additional challenges must be addressed before the goal of personalized cancer therapy can become a reality for lung cancer patients.
    Archives of pathology & laboratory medicine 10/2012; 136(10):1210-6. · 2.78 Impact Factor
  • Source
    BMC proceedings 10/2012; 6(6).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rhabdoid tumors (also called atypical teratoid/rhabdoid tumor (AT/RT) in the brain), are highly malignant, poor prognosis lesions arising in the kidneys, soft tissues, and central nervous system. Targeted therapy in this disease would benefit from advanced technologies detecting relevant actionable mutations. Here we report on the evaluation of 25 tumors, all with known SMARCB1/INI1 alterations, for the presence of 983 different mutations in 115 oncogenes and tumor-suppressor genes using OncoMap, a mass spectrometric method of allele detection. Other than mutations in SMARCB1, our results identified a single activating mutation in NRAS and complete absence of oncogenic mutations in all other genes tested. The absence of mutations in canonical pathways critical for development and progression of adult cancers suggests that distinct mechanisms drive these highly malignant pediatric tumors. This may limit the therapeutic utility of available targeted therapies and require a refocusing toward developmental and epigenetic pathways. Pediatr Blood Cancer 2012; 59: 1155-1157. © 2012 Wiley Periodicals, Inc.
    Pediatric Blood & Cancer 09/2012; 59(7):1155-7. · 2.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose. We assessed for mutations in a large number of oncogenes and tumor suppressor genes in primary uveal melanomas using a high-throughput profiling system. Methods. DNA was extracted and purified from 134 tissue samples from fresh-frozen tissues (n = 87) or formalin-fixed, paraffin-embedded tissues (n = 47) from 124 large uveal melanomas that underwent primary treatment by enucleation. DNA was subjected to whole genome amplification and MALDI-TOF mass spectrometry-based mutation profiling (>1000 mutations tested across 120 oncogenes and tumor suppressor genes) using the OncoMap3 platform. All candidate mutations, as well as commonly occurring mutations in GNAQ and GNA11, were validated using homogeneous mass extension (hME) technology. Results. Of 123 samples, 97 (79%, representing 89 unique tumors) were amplified successfully, passed all quality control steps, and were assayed with the OncoMap platform. A total of 58 mutation calls was made for 49 different mutations across 26 different genes in 34/98 (35%) samples. Of 91 tumors that underwent hME validation, 83 (91%) harbored mutations in the GNAQ (47%) or GNA11 (44%) genes, while hME validation revealed two tumors with mutations in EGFR. These additional mutations occurred in tumors that also had mutations in GNAQ or GNA11. Conclusions. The vast majority of primary large uveal melanomas harbor mutually-exclusive mutations in GNAQ or GNA11, but very rarely have the oncogenic mutations that are reported commonly in other cancers. When present, these other mutations were found in conjunction with GNAQ/GNA11 mutations, suggesting that these other mutations likely are not the primary drivers of oncogenesis in uveal melanoma.
    Investigative ophthalmology & visual science 09/2012; 53(11):6991-6. · 3.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Alternative Lengthening of Telomeres (ALT) pathway is a telomerase-independent pathway for telomere maintenance that is active in a significant subset of human cancers and in vitro immortalized cell lines. ALT is thought to involve templated extension of telomeres through homologous recombination, but the genetic or epigenetic changes that unleash ALT are not known. Recently, mutations in the ATRX/DAXX chromatin remodeling complex and histone H3.3 were found to correlate with features of ALT in pancreatic neuroendocrine cancers, pediatric glioblastomas, and other tumors of the central nervous system, suggesting that these mutations might contribute to the activation of the ALT pathway in these cancers. We have taken a comprehensive approach to deciphering ALT by applying genomic, molecular biological, and cell biological approaches to a panel of 22 ALT cell lines, including cell lines derived in vitro. Here we show that loss of ATRX protein and mutations in the ATRX gene are hallmarks of ALT-immortalized cell lines. In addition, ALT is associated with extensive genome rearrangements, marked micronucleation, defects in the G2/M checkpoint, and altered double-strand break (DSB) repair. These attributes will facilitate the diagnosis and treatment of ALT positive human cancers.
    PLoS Genetics 07/2012; 8(7):e1002772. · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To illustrate the complex patterns that emerge when race/ethnicity, socioeconomic status (SES), and gender are considered simultaneously in health care disparities research and to outline the needed research to understand them by using disparities in lung cancer risks, treatment, and outcomes as an example. SES, gender, and race/ethnicity are social categories that are robust predictors of variations in health and health services utilization. These are usually considered separately, but intersectionality theory indicates that the impact of each depends on the others. Each reflects historically and culturally contingent variations in social, economic, and political status. Distinct patterns of risk and resilience emerge at the intersections of multiple social categories and shape the experience of health, health care access, utilization, quality, and outcomes where these categories intersect. Intersectional approaches call for greater attention to understand social processes at multiple levels of society and require the collection of relevant data and utilization of appropriate analytic approaches to understand how multiple risk factors and resources combine to affect the distribution of disease and its management. Understanding how race/ethnicity, gender, and SES are interactive, interdependent, and social identities can provide new knowledge to enhance our efforts to effectively address health disparities.
    Health Services Research 06/2012; 47(3 Pt 2):1255-77. · 2.29 Impact Factor

Publication Stats

2k Citations
496.99 Total Impact Points

Institutions

  • 2012–2014
    • Brigham and Women's Hospital
      • • Department of Pathology
      • • Department of Medicine
      Boston, Massachusetts, United States
  • 2006–2014
    • Dana-Farber Cancer Institute
      • Department of Medical Oncology
      Boston, Massachusetts, United States
  • 2010–2012
    • Broad Institute of MIT and Harvard
      Cambridge, Massachusetts, United States
  • 2011
    • Massachusetts Institute of Technology
      Cambridge, Massachusetts, United States