Kazumasa Murata

Agriculture, Forestry and Fisheries Research Council, Tsukuba, Ibaraki, Japan

Are you Kazumasa Murata?

Claim your profile

Publications (7)29.81 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently, a new assay method that can quantify the aroxyl radical (ArO•) absorption capacity (ARAC) of antioxidants (AOHs) was proposed. In the present work, the second-order rate constants (ksExtract) and ARAC values for the reaction of ArO• with seven kinds of rice bran extracts 1 - 7, which contain different concentrations of α-, β-, γ-, and δ-tocopherols and -tocotrienols (α-, β-, γ-, and δ-Tocs and -Toc-3s) and γ-oryzanol, were measured in ethanol at 25oC using stopped-flow spectrophotometry. The ksExtract value (1.26×10-2 M-1s-1) of Nipponbare (extract 1) with the highest activity was 1.5 times larger than that (8.29×10-3) of Milyang-23 (extract 7) with the lowest activity. The concentrations (in mg/100 g) of α-, β-, γ-, and δ-Tocs and -Toc-3s and γ-oryzanol found in the seven extracts 1 - 7 were determined using HPLC-MS/MS and UV-vis absorption spectroscopy, respectively. From the results, it has been clarified that the ArO•-scavenging rates (ksExtract) (that is, the relative ARAC value) obtained for the seven extracts 1 - 7 may be approximately explained as the sum of the product {Σ ksAOH-i [AOH-i]/105} of the rate constant (ksAOH-i) and the concentration ([AOH-i]/105) of AOH-i (Tocs, Toc-3s, and γ-oryzanol) included in rice bran extracts. The contribution of γ-oryzanol to the ksExtract value was estimated to be between 3.0 - 4.7% for each extract. Taken together, these results suggest that the ARAC assay method is applicable to general food extracts.
    Journal of agricultural and food chemistry. 11/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rice (Oryza sativa L.) can produce black grains as well as white. In black rice, the pericarp of the grain accumulates anthocyanin, which has antioxidant activity and is beneficial to human health. We developed a black rice introgression line in the genetic background of Oryza sativa L. 'Koshihikari', which is a leading variety in Japan. We used Oryza sativa L. 'Hong Xie Nuo' as the donor parent and backcrossed with 'Koshihikari' four times, resulting in a near isogenic line (NIL) for black grains. A whole genome survey of the introgression line using DNA markers suggested that three regions, on chromosomes 1, 3 and 4 are associated with black pigmentation. The locus on chromosome 3 has not been identified previously. A mapping analysis with 546 F2 plants derived from a cross between the black rice NIL and 'Koshihikari' was evaluated. The results indicated that all three loci are essential for black pigmentation. We named these loci Kala1, Kala3 and Kala4. The black rice NIL was evaluated for eating quality and general agronomic traits. The eating quality was greatly superior to that of 'Okunomurasaki', an existing black rice variety. The isogenicity of the black rice NIL to 'Koshihikari' was very high.
    Breeding Science 06/2014; 64(2):134-41. · 1.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increases in rates of individual leaf photosynthesis (P n) are critical for future increases of rice yields. A previous study, using introgression lines derived from a cross between indica cultivar Habataki, with one of the highest recorded values of P n, and the Japanese elite cultivar Koshihikari, identified four QTLs (qCAR4, qCAR5, qCAR8, and qCAR11) that affect P n. The present study examined the combined effect of qCAR4 and qCAR8 on P n in the genetic background of Koshihikari. The pyramided near-isogenic line NIL(qCAR4+qCAR8) showed higher P n than both NIL(qCAR4) and NIL(qCAR8), equivalent to that of Habataki despite being due to only two out of the four QTLs. The high P n of NIL(qCAR4+qCAR8) may be attributable to the high leaf nitrogen content, which may have been inherited from NIL(qCAR4), to the large hydraulic conductance due to the large root surface area from NIL(qCAR4), and to the high hydraulic conductivity from NIL(qCAR8). It might be also attributable to high mesophyll conductance, which may have been inherited from NIL(qCAR4). The induction of mesophyll conductance and the high leaf nitrogen content and high hydraulic conductivity could not be explained in isolation from the Koshihikari background. These results suggest that QTL pyramiding is a useful approach in rice breeding aimed at increasing P n.
    Journal of Experimental Botany 03/2014; · 5.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rice tocotrienol (T3) has gained attention due to its physiological activities (e.g., antiangiogenesis). However, the biosynthetic pathway for T3 production in rice grain has not been well studied. We hypothesized that T3 biosynthesis enzymes and/or precursors play an important role in T3 production in whole grain. This proposal was evaluated in rice (Oryza sativa L.) by PCR and HPLC techniques. Grain tocopherol as well as flag leaf vitamin E levels were also investigated for comparison. For rice samples 14days after flowering, grain was abundant in T3, but not in flag leaf. Expression of a gene encoding homogentisate geranylgeranyltransferase (HGGT, which has long been believed to be important for T3 production) differed significantly between grain and flag leaf. We then investigated rice samples during the grain maturation period, and found that grain T3 and HGGT levels increased in the early stage and then reached a plateau. T3 precursors such as homogentisate and geranylgeranyl pyrophosphate decreased during maturation. No increase in grain T3 from the middle to late stages of maturation and a decrease in T3 precursors during maturation suggest that HGGT would be an essential, but not limiting factor for T3 biosynthesis, and T3 precursors could regulate the T3 level in grain. The results of this study would be useful for nutraceutical purposes (e.g., development of T3-overproducing rice for the prevention of angiogenic disorders).
    Food Chemistry 09/2013; 140(1-2):91-8. · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA marker-assisted selection appears to be a promising strategy for improving rates of leaf photosynthesis in rice. The rate of leaf photosynthesis was significantly higher in a high-yielding indica variety, Habataki, than in the most popular Japanese variety, Koshihikari, at the full heading stage as a result of the higher level of leaf nitrogen at the same rate of application of nitrogen and the higher stomatal conductance even when the respective levels of leaf nitrogen were the same. The higher leaf nitrogen content of Habataki was caused by the greater accumulation of nitrogen by plants. The higher stomatal conductance of Habataki was caused by the higher hydraulic conductance. Using progeny populations and selected lines derived from a cross between Koshihikari and Habataki, it was possible to identify the genomic regions responsible for the rate of photosynthesis within a 2.1 Mb region between RM17459 and RM17552 and within a 1.2 Mb region between RM6999 and RM22529 on the long arm of chromosome 4 and on the short arm of chromosome 8, respectively. The designated region on chromosome 4 of Habataki was responsible for both the increase in the nitrogen content of leaves and hydraulic conductance in the plant by increasing the root surface area. The designated region on chromosome 8 of Habataki was responsible for the increase in hydraulic conductance by increasing the root hydraulic conductivity. The results suggest that it may be possible to improve photosynthesis in rice leaves by marker-assisted selection that focuses on these regions of chromosomes 4 and 8.
    Journal of Experimental Botany 02/2011; 62(6):1927-38. · 5.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of fertilizer results in tall rice plants that are susceptible to lodging and results in reduced plant yields. In this study, using chromosome segment substitution lines, we identified an effective quantitative trait loci (QTL) for culm strength, which was designated STRONG CULM2 (SCM2). Positional cloning of the gene revealed that SCM2 was identical to ABERRANT PANICLE ORGANIZATION1 (APO1), a gene previously reported to control panicle structure. A near-isogenic line carrying SCM2 showed enhanced culm strength and increased spikelet number because of the pleiotropic effects of the gene. Although SCM2 is a gain-of-function mutant of APO1, it does not have the negative effects reported for APO1 overexpression mutants, such as decreased panicle number and abnormal spikelet morphology. The identification of lodging-resistance genes by QTL analysis combined with positional cloning is a useful approach for improving lodging resistance and overall productivity in rice.
    Nature Communications 11/2010; 1:132. · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As rice bran tocotrienol (T3) has been known to have a wide range of physiological functions (e.g., antiangiogenesis), we aimed at developing a T3-rich rice variety for nutraceutical purposes. T3 content in more than 250 kinds of rice bran samples were investigated, and Milyang23 was found as the best variety rich in T3. The variety was therefore chosen for cross-fertilization with Koshihikari. Among obtained F(2) progenies, some of them became improved in T3 content (up to 2-fold of reference Koshihikari). QTL analysis of the F(2) progenies revealed five putative loci corresponding to T3 biosynthesis, in which the main loci were located near a marker RM3827 on chromosome 6. The results show that cross-breeding is effective in improving rice bran T3 and provides more genetic understanding on T3 biosynthesis in rice plants.
    Journal of Agricultural and Food Chemistry 06/2009; 57(11):4620-5. · 3.11 Impact Factor