Juli R Gould

United States Department of Agriculture, Washington, Washington, D.C., United States

Are you Juli R Gould?

Claim your profile

Publications (11)14.48 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The emerald ash borer Agrilus planipennis Fairmaire is a serious invasive forest pest of ash (Fraxinus) trees in North America. Life tables were constructed for both experimentally established cohorts and wild populations of A. planipennis on healthy host trees from 2008 to 2011 in six forests in central Michigan.Life table analysis showed that the net population growth rates (R0) for the experimental cohorts (16.0 ± 2.9) and associated wild A. planipennis (19.4 ± 1.9) were the highest for the first study period (2008–2009) at three Ingham Co. sites but decreased to 4.7 ± 0.9 and 4.6 ± 0.4, respectively, for the second (2009–2010) study period at the same sites. By contrast, R0 values of both experimental cohorts (5.7 ± 2.2) and associated wild A. planipennis populations (11.3 ± 2.5) were intermediate in the third (2010–2011) study period at different sites in the Gratiot and Shiawassee Cos.The sudden decrease in R0 of both experimental and wild A. planipennis cohorts in the Ingham Co. sites corresponded with increases in parasitism by hymenopteran parasitoids Atanycolus spp. (native) and Tetrastichus planipennisi Yang (introduced), as well as an increase in woodpecker predation, indicating the role of these natural enemies in regulation of the pest's population dynamics.
    Agricultural and Forest Entomology 05/2014; · 1.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Competition for food, mates, and space among different individuals of the same insect species can affect density-dependent regulation of insect abundance or population dynamics. The emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is a serious invasive pest of North American ash (Fraxinus spp.) trees, with its larvae feeding in serpentine galleries between the interface of sapwood and phloem tissues of ash trees. Using artificial infestation of freshly cut logs of green ash (Fraxinus pennsylvanica Marshall) and tropical ash (Fraxinus uhdei [Wenzig] Lingelsh) with a series of egg densities, we evaluated the mechanism and outcome of intraspecific competition in larvae of A. planipennis in relation to larval density and host plant species. Results from our study showed that as the egg densities on each log (1.5-6.5 cm in diameter and 22-25 cm in length) increased from 200 to 1,600 eggs per square meter of surface area, larval survivorship declined from ≈68 to 10% for the green ash logs, and 86 to 55% for tropical ash logs. Accordingly, larval mortality resulting from cannibalism, starvation, or both, significantly increased as egg density increased, and the biomass of surviving larvae significantly decreased on both ash species. When larval density was adjusted to the same level, however, larval mortality from intraspecific competition was significantly higher and mean biomasses of surviving larvae was significantly lower in green ash than in tropical ash. The role of intraspecific competition of A. planipennis larvae in density-dependent regulation of its natural population dynamics is discussed.
    Environmental Entomology 11/2013; · 1.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The emerald ash borer (EAB), Agrilus planipennis, is an invasive beetle that has killed millions of ash trees (Fraxinus spp.) since it was accidentally introduced to North America in the 1990s. Understanding how predators such as woodpeckers (Picidae) affect the population dynamics of EAB should enable us to more effectively manage the spread of this beetle, and toward this end we combined two experimental approaches to elucidate the relative importance of woodpecker predation on EAB populations. First, we examined wild populations of EAB in ash trees in New York, with each tree having a section screened to exclude woodpeckers. Second, we established experimental cohorts of EAB in ash trees in Maryland, and the cohorts on half of these trees were caged to exclude woodpeckers. The following spring these trees were debarked and the fates of the EAB larvae were determined. We found that trees from which woodpeckers were excluded consistently had significantly lower levels of predation, and that woodpecker predation comprised a greater source of mortality at sites with a more established wild infestation of EAB. Additionally, there was a considerable difference between New York and Maryland in the effect that woodpecker predation had on EAB population growth, suggesting that predation alone may not be a substantial factor in controlling EAB. In our experimental cohorts we also observed that trees from which woodpeckers were excluded had a significantly higher level of parasitism. The lower level of parasitism on EAB larvae found when exposed to woodpeckers has implications for EAB biological control, suggesting that it might be prudent to exclude woodpeckers from trees when attempting to establish parasitoid populations. Future studies may include utilizing EAB larval cohorts with a range of densities to explore the functional response of woodpeckers.
    PLoS ONE 01/2013; 8(12):e83491. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The braconid wasp, Spathius agrili, has been released in the U.S. as a biocontrol agent for the invasive emerald ash borer (Coleoptera: Buprestidae: Agrilus planipennis), a destructive pest of ash trees (Fraxinus spp.). We identified and synthesized seven male-specific volatile compounds. Three of these, dodecanal, (4R,11E)-tetradecen-4-olide, and (Z)-10-heptadecen-2-one, were the key behaviorally active components in flight tunnel bioassays. Male specificity was demonstrated by gas chromatographic comparison of male and female volatile emissions and whole body extracts. Identifications were aided by coupled gas chromatographic-mass spectrometric (GC-MS) analysis, microchemical reactions, NMR, chiral GC analysis, and GC and MS comparison with authentic standards. Both the racemic and chiral forms of the γ-lactone, as well as both E- and Z-isomers were synthesized. Flight tunnel behavioral tests showed positive male and female S. agrili responses to both natural pheromone and synthetic blends, with upwind flight and landing on the source. Large field-cage tests, using yellow sticky traps baited with pheromone, captured approximately 50% of the released male and female wasps in 24-h periods. The use of pheromone-baited traps in the field could simplify the current detection method for determining parasitoid establishment (i.e., laboriously felling and peeling ash trees for recovery of S. agrili from infested EAB larvae).
    Journal of Chemical Ecology 03/2012; 38(4):389-99. · 2.46 Impact Factor
  • Juli R Gould, Tracy Ayer, Ivich Fraser
    [Show abstract] [Hide abstract]
    ABSTRACT: Spathius agrili Yang (Hymenoptera: Braconidae) can be successfully reared on emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), larvae feeding in chambers drilled in small ash twigs that are wrapped with floral tape. Females maintained in groups with males for one week can receive enough sperm for production of female progeny throughout their lives. Volatiles released by emerald ash borer adults feeding on ash foliage increased parasitoid fecundity over ash foliage alone or no stimulus. The temperature at which the parasitoids were reared ranged from 20 to 25 degrees C in a daily cycle; however, raising the daily maximum temperature to 28 degrees C did not affect parasitoid longevity or fecundity. Adult females lived between 12 and 127 d, with an average of 60.8 +/- 4.5 d. Males lived slightly longer, with an average of 66 +/- 4.5 d. The first clutch of eggs was laid when the female was between 2 and 42 d old, with the average preoviposition period lasting 11.4 +/- 1.4 or 19.5 +/- 2.0 d in 2007 and 2009 trials, respectively. A higher proportion of the emerald ash borer larvae were feeding and thus attractive to parasitoids in the 2009 trial, and female S. agrili laid an average of 9.5 +/- 1.0 clutches containing 5.4 +/- 0.2 eggs, for an average of 51.2 eggs per female. Approximately three quarters of the progeny were female. The number of eggs per clutch was significantly greater when deposited on larger emerald ash borer larvae, further highlighting the need for quality larvae in rearing. Chilling S. agrili pupae at 10 degrees C to stockpile them for summer release was not successful; chilling resulted in lower survival and lower fecundity of emerging progeny. Female S. agrili proved capable of attacking emerald ash borer larvae through even the thickest bark of an ash tree that was 30-cm diameter at breast height. Even emerald ash borer larvae that were creating overwintering chambers in the outer sapwood of the tree were successfully attacked, suggesting that S. agrili could be reared on field collected logs infested with emerald ash borer.
    Journal of Economic Entomology 04/2011; 104(2):379-87. · 1.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Field-cage methods were developed to evaluate the abilities of Tetrastichus planipennisi Yang (Hymenoptera: Eulophidae) and Spathius agrili Yang (Hymenoptera: Braconidae), biocontrol agents of Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), to parasitize, develop and overwinter following three late-season releases at both a northern (Michigan) and a southern (Maryland) location within the current North American range of A. planipennis. In August, September and October of 2009, five young green ash trees were selected at each location. Tetrastichus planipennisi and S. agrili were each randomly assigned to one of two cages attached to each tree, surrounding separate sections of trunk in which late-instar A. planipennis had been inserted. The following April, the caged trunk sections were dissected to determine the fate of each A. planipennis larva and the developmental stages of all recovered parasitoid progeny. At both locations, T. planipennisi and S. agrili were able to parasitize hosts and successfully overwinter (i.e., reach adulthood the following spring). For T. planipennisi, successful parasitism (i.e., parasitoid progeny reached adulthood) occurred for all caged releases in Maryland, but only for the August and September releases in Michigan. At both locations, percent parasitism by T. planipennisi was higher in August and September than in October. For S. agrili, successful parasitism occurred for all caged releases in Maryland, but only for the August release in Michigan. In Maryland, percent parasitism by S. agrili in August and September was higher than in October. The caging method described here should be useful in determining the climatic suitability of other regions before proceeding with large-scale releases of either species and may have utility in other wood-borer parasitoid systems as well.
    Journal of Insect Science 01/2011; 11:141. · 0.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: a b s t r a c t A field study was conducted in forested plots near Lansing, Michigan in 2008 and 2009 to evaluate the newly introduced egg parasitoid Oobius agrili Zhang and Huang (Hymenoptera: Encyrtidae) for control of the invasive emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). To mea-sure parasitism by O. agrili, laboratory-reared ''sentinel EAB eggs'' were deployed under bark flaps on trunks of selected ash trees in both parasitoid-release and non-release control plots. In addition, naturally occurring EAB eggs were collected in both parasitoid-release and control plots to measure parasitism. While no parasitism was detected with either sentinel or naturally occurring EAB eggs in control plots in either 2008 or 2009, a low level of parasitism by O. agrili was detected in the parasitoid-release plots in both artificially deployed sentinel eggs (61%) and field-collected, naturally occurring eggs (1.1–4.2%) in both years. In addition to losses due to parasitism by O. agrili, a large proportion (37–52%) of the field-deployed sentinel eggs disappeared, possibly due to predators such as ants, in both parasitoid-release and control plots. While no statistical differences in parasitism by O. agrili were detected between para-sitoid release and control plots, other sources of egg mortality such as disappearance due to predation on eggs, varied significantly across study sites in both 2008 and 2009. The relevance of these findings to future release and evaluation strategies for O. agrili for biological control of the invasive emerald ash borer in the US is discussed. Published by Elsevier Inc.
    Biological Control - BIOL CONTROL. 12/2010; 56(2).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cohorts of emerald ash borer larvae, Agrilus planipennis Fairmaire, were experimentally established in July of 2008 on healthy green ash (Fraxinus pennsylvanica) trees in two wooded plots at each of three sites near Lansing, MI, by caging gravid emerald ash borer females or placing laboratory-reared eggs on trunks (0.5-2 m above the ground) of selected trees. One plot at each site was randomly chosen for release of two introduced larval parasitoids, Tetrastichus planipennisi Yang (Hymenoptera: Eulophidae) and Spathius agrili Yang (Hymenoptera: Braconidae), whereas the other served as the control. Stage-specific mortality factors and rates were measured for all experimentally established cohorts and for associated wild (i.e., naturally occurring) emerald ash borer immature stages via destructive sampling of 2.5 m (above the ground) trunk sections of cohort-bearing trees in the spring and fall of 2009. Host tree defense was the most important mortality factor, causing 32.0 to 41.1% mortality in the experimental cohorts and 17.5 to 21.5% in wild emerald ash borer stages by spring 2009, and 16.1 to 29% for the remaining experimental cohorts, and 9.9 to 11.8% for wild immature emerald ash borer stages by fall 2009. Woodpecker predation was the second most important factor, inflicting no mortality in the experimental cohorts but causing 5.0 to 5.6% mortality to associated wild emerald ash borer stages by spring 2009 and 9.2 to 12.8% and 3.2 to 17.7%, respectively, for experimental cohorts and wild emerald ash borer stages by fall 2009. Mortality from disease in both the experimental and wild cohorts was low (<3%) in both the spring and fall sample periods. In the fall 2009 samples, ≈ 1.5% of experimental cohorts and 0.8% of the wild emerald ash borer stages were parasitized by T. planipennisi. While there were no significant differences in mortality rates because of parasitism between parasitoid-release and control plots, T. planipennisi was detected in each of the three release sites by the end of the study but was not detected in the experimental cohorts or associated wild larvae in any of the three control plots.
    Environmental Entomology 10/2010; 39(5):1513-22. · 1.31 Impact Factor
  • Newsletter of the Michigan Entomological Society. 12/2008; 53(3-4):38-39.
  • ZQ Yang, XY Wang, Juli R Gould
    Biological Control 01/2008; · 1.92 Impact Factor
  • Leah S Bauer, HP Liu, Juli R Gould
    Biocontrol news and Information. 01/2007; 28(3):51N-54N.

Publication Stats

37 Citations
14.48 Total Impact Points


  • 2011–2012
    • United States Department of Agriculture
      • Agricultural Research Service (ARS)
      Washington, Washington, D.C., United States
    • Michigan State University
      • Department of Entomology
      East Lansing, MI, United States
  • 2010
    • Agricultural Research Service
      Kerrville, Texas, United States