J. L. Sievers

University of KwaZulu-Natal, Port Natal, KwaZulu-Natal, South Africa

Are you J. L. Sievers?

Claim your profile

Publications (93)333.88 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We present a measurement of the gravitational lensing of the Cosmic Microwave Background (CMB) temperature and polarization fields obtained by cross-correlating the reconstructed convergence signal from the first season of ACTPol data at 146 GHz with Cosmic Infrared Background (CIB) fluctuations measured using the Planck satellite. Using an overlap area of 206 square degrees, we detect gravitational lensing of the CMB polarization by large-scale structure at a statistical significance of 4.5 sigma. Combining both CMB temperature and polarization data gives a lensing detection at 9.1 sigma significance. A B-mode polarization lensing signal is present with a significance of 3.2 sigma. We also present the first measurement of CMB lensing--CIB correlation at small scales corresponding to l > 2000. Null tests and systematic checks show that our results are not significantly biased by astrophysical or instrumental systematic effects, including Galactic dust. Fitting our measurements to the best-fit lensing-CIB cross power spectrum measured in Planck data, scaled by an amplitude A, gives A=1.02 +0.12/-0.18 (stat.) +/-0.06(syst.), consistent with the Planck results.
    12/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a measurement of the one-point probability distribution function (PDF) of the thermal Sunyaev-Zel'dovich (tSZ) decrement in the pixel temperature histogram of filtered 148 GHz sky maps from the Atacama Cosmology Telescope (ACT). The PDF includes the signal from all galaxy clusters in the map, including objects below the signal-to-noise threshold for individual detection, making it a particularly sensitive probe of the amplitude of matter density perturbations, $\sigma_8$. We use a combination of analytic halo model calculations and numerical simulations to compute the theoretical tSZ PDF and its covariance matrix, accounting for all noise sources and including relativistic corrections. From the measured ACT 148 GHz PDF alone, we find $\sigma_8 = 0.793 \pm 0.018$, with additional systematic errors of $\pm 0.017$ due to uncertainty in intracluster medium gas physics and $\pm 0.006$ due to uncertainty in infrared point source contamination. Using effectively the same data set, the statistical error here is a factor of two lower than that found in ACT's previous $\sigma_8$ determination based solely on the skewness of the tSZ signal. In future temperature maps with higher sensitivity, the tSZ PDF will break the degeneracy between intracluster medium gas physics and cosmological parameters.
    11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present a multi-wavelength analysis of eleven Sunyaev Zel'dovich effect (SZE)-selected galaxy clusters (ten with new data) from the Atacama Cosmology Telescope (ACT) southern survey. We have obtained new imaging from the Large APEX Bolometer Camera (345GHz; LABOCA) on the Atacama Pathfinder EXperiment (APEX) telescope, the Australia Telescope Compact Array (2.1GHz; ATCA), and the Spectral and Photometric Imaging Receiver (250, 350, and $500\,\rm\mu m$; SPIRE) on the Herschel Space Observatory. Spatially-resolved 345GHz SZE increments with integrated S/N > 5 are found in six clusters. We compute 2.1GHz number counts as a function of cluster-centric radius and find significant enhancements in the counts of bright sources at projected radii $\theta < \theta_{2500}$. By extrapolating in frequency, we predict that the combined signals from 2.1GHz-selected radio sources and 345GHz-selected SMGs contaminate the 148GHz SZE decrement signal by ~5% and the 345GHz SZE increment by ~18%. After removing radio source and SMG emission from the SZE signals, we use ACT, LABOCA, and (in some cases) new Herschel SPIRE imaging to place constraints on the clusters' peculiar velocities. The sample's average peculiar velocity relative to the cosmic microwave background is $153\pm 383\,\rm km\,s^{-1}$.
    11/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present Southern African Large Telescope (SALT) follow-up observations of seven massive clusters detected by the Atacama Cosmology Telescope (ACT) on the celestial equator using the Sunyaev-Zel'dovich (SZ) effect. We conducted multi-object spectroscopic observations with the Robert Stobie Spectrograph in order to measure galaxy redshifts in each cluster field, determine the cluster line-of-sight velocity dispersions, and infer the cluster dynamical masses. We find that the clusters, which span the redshift range 0.3 < z < 0.55, range in mass from (5 -- 20) x 10$^{14}$ solar masses (M200c). Their masses, given their SZ signals, are similar to those of southern hemisphere ACT clusters previously observed using Gemini and the VLT. We note that the brightest cluster galaxy in one of the systems studied, ACT-CL J0320.4+0032 at z = 0.38, hosts a Type II quasar. To our knowledge, this is only the third such system discovered, and therefore may be a rare example of a very massive halo in which quasar-mode feedback is actively taking place.
    10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Atacama B-mode Search (ABS) instrument, which began observation in February of 2012, is a crossed-Dragone telescope located at an elevation of 5,100 m in the Atacama Desert in Chile. The primary scientific goal of ABS is to measure the B-mode polarization spectrum of the Cosmic Microwave Background from multipole moments of about \(\ell \approx \) 50 to \(\ell \approx \) 500 (angular scales from \({\sim }0.4^\circ \) to \({\sim }4^\circ \) ), a range that includes the primordial B-mode peak from inflationary gravitational waves. The ABS focal plane array consists of 240 pixels designed for observation at 145 GHz by the TRUCE collaboration. Each pixel has its own individual, single-moded feedhorn and contains two transition-edge sensor bolometers coupled to orthogonal polarizations that are read out using time domain multiplexing. We will report on the current status of ABS and discuss the time constants and optical efficiencies of the TRUCE detectors in the field.
    Journal of Low Temperature Physics 09/2014; 176(5-6). · 1.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Atacama B-mode Search (ABS), which began observations in February of 2012, is a crossed-Dragone telescope located at an elevation of 5190 m in the Atacama Desert in Chile. ABS is searching for the B-mode polarization spectrum of the cosmic microwave background (CMB) at large angular scales from multipole moments of ` ~ 50 ~ 500, a range that includes the primor- dial B-mode peak from inflationary gravity waves at ~ 100. The ABS focal plane consists of 240 pixels sensitive to 145 GHz, each containing two transition-edge sensor bolometers coupled to orthogonal polarizations with a planar ortho-mode transducer. An ambient-temperature con- tinuously rotating half-wave plate and 4 K optics make the ABS instrument unique. We discuss the characterization of the detector spectral responses with a Fourier transform spectrometer and demonstrate that the pointing model is adequate. We also present measurements of the beam from point sources and compare them with simulations.
    SPIE Astronomical Telescopes + Instrumentation; 07/2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Future arcminute resolution polarization data from ground-based Cosmic Microwave Background (CMB) observations can be used to estimate the contribution to the temperature power spectrum from the primary anisotropies and to uncover the signature of reionization near $\ell=1500$ in the small angular-scale temperature measurements. Our projections are based on combining expected small-scale E-mode polarization measurements from Advanced ACTPol in the range $300<\ell<3000$ with simulated temperature data from the full Planck mission in the low and intermediate $\ell$ region, $2<\ell<2000$. We show that the six basic cosmological parameters determined from this combination of data will predict the underlying primordial temperature spectrum at high multipoles to better than $1\%$ accuracy. Assuming an efficient cleaning from multi-frequency channels of most foregrounds in the temperature data, we investigate the sensitivity to the only residual secondary component, the kinematic Sunyaev-Zel'dovich (kSZ) term. The CMB polarization is used to break degeneracies between primordial and secondary terms present in temperature and, in effect, to remove from the temperature data all but the residual kSZ term. We estimate a $15 \sigma$ detection of the diffuse homogeneous kSZ signal from expected AdvACT temperature data at $\ell>1500$, leading to a measurement of the amplitude of matter density fluctuations, $\sigma_8$, at $1\%$ precision. Alternatively, by exploring the reionization signal encoded in the patchy kSZ measurements, we bound the time and duration of the reionization with $\sigma(z_{\rm re})=1.1$ and $\sigma(\Delta z_{\rm re})=0.2$. We find that these constraints degrade rapidly with large beam sizes, which highlights the importance of arcminute-scale resolution for future CMB surveys.
    Journal of Cosmology and Astroparticle Physics 06/2014; JCAP08(2014)010. · 6.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the outskirts of galaxy clusters at the virial radius (R200) and beyond is critical for an accurate determination of cluster masses and to ensure unbiased cosmological parameter estimates from cluster surveys. This problem has drawn renewed interest due to recent determinations of gas mass fractions beyond R200, which appear to be considerably larger than the cosmic mean, and because the clusters' total Sunyaev-Zel'dovich flux receives a significant contribution from these regions. Here, we use a large suite of cosmological hydrodynamical simulations to study the clumpiness of density and pressure and employ different variants of simulated physics, including radiative gas physics and thermal feedback by active galactic nuclei. We find that density and pressure clumping closely trace each other as a function of radius, but the bias on density remains on average < 20% within the virial radius R200. At larger radius, clumping increases steeply due to the continuous infall of coherent structures that have not yet passed the accretion shock. Density and pressure clumping increase with cluster mass and redshift, which probes on average dynamically younger objects that are still in the process of assembling. The angular power spectra of gas density and pressure show that the clumping signal is dominated by comparably large substructures with scales >R200/5, signaling the presence of gravitationally-driven "super-clumping". In contrast, the angular power spectrum of the dark matter (DM) shows an almost uniform size distribution due to unimpeded subhalos. The quadrupolar anisotropy dominates the signal and correlates well across different radii as a result of the prolateness of the DM potential. We provide a synopsis of the radial dependence of the clusters' non-equilibrium measures (kinetic pressure support, ellipticity, and clumping) that all increase sharply beyond R200.
    05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the outskirts of galaxy clusters at the virial radius (R200) and beyond is critical for an accurate determination of cluster masses and to ensure unbiased cosmological parameter estimates from cluster surveys. This problem has drawn renewed interest due to recent determinations of gas mass fractions beyond R200, which appear to be considerably larger than the cosmic mean, and because the clusters' total Sunyaev-Zel'dovich flux receives a significant contribution from these regions. Here, we use a large suite of cosmological hydrodynamical simulations to study the clumpiness of density and pressure and employ different variants of simulated physics, including radiative gas physics and thermal feedback by active galactic nuclei. We find that density and pressure clumping closely trace each other as a function of radius, but the bias on density remains on average < 20% within the virial radius R200. At larger radius, clumping increases steeply due to the continuous infall of coherent structures that have not yet passed the accretion shock. Density and pressure clumping increase with cluster mass and redshift, which probes on average dynamically younger objects that are still in the process of assembling. The angular power spectra of gas density and pressure show that the clumping signal is dominated by comparably large substructures with scales >R200/5, signaling the presence of gravitationally-driven "super-clumping". In contrast, the angular power spectrum of the dark matter (DM) shows an almost uniform size distribution due to unimpeded subhalos. The quadrupolar anisotropy dominates the signal and correlates well across different radii as a result of the prolateness of the DM potential. We provide a synopsis of the radial dependence of the clusters' non-equilibrium measures (kinetic pressure support, ellipticity, and clumping) that all increase sharply beyond R200.
    04/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the temperature power spectra of the cosmic microwave background (CMB) derived from the three seasons of data from the Atacama Cosmology Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. We detect and correct for contamination due to the Galactic cirrus in our equatorial maps. We present the results of a number of tests for possible systematic error and conclude that any effects are not significant compared to the statistical errors we quote. Where they overlap, we cross-correlate the ACT and the South Pole Telescope (SPT) maps and show they are consistent. The measurements of higher-order peaks in the CMB power spectrum provide an additional test of the Lambda CDM cosmological model, and help constrain extensions beyond the standard model. The small angular scale power spectrum also provides constraining power on the Sunyaev-Zel'dovich effects and extragalactic foregrounds. We also present a measurement of the CMB gravitational lensing convergence power spectrum at 4.6-sigma detection significance.
    Journal of Cosmology and Astroparticle Physics 04/2014; 2014(04):014. · 6.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the temperature power spectrum of the Cosmic Microwave Background obtained by cross-correlating maps from the Atacama Cosmology Telescope (ACT) at 148 and 218 GHz with maps from the Planck satellite at 143 and 217 GHz, in two overlapping regions covering 592 square degrees. We find excellent agreement between the two datasets at both frequencies, quantified using the variance of the residuals between the ACT power spectra and the ACTxPlanck cross-spectra. We use these cross-correlations to calibrate the ACT data at 148 and 218 GHz, to 0.7% and 2% precision respectively. We find no evidence for anisotropy in the calibration parameter. We compare the Planck 353 GHz power spectrum with the measured amplitudes of dust and cosmic infrared background (CIB) of ACT data at 148 and 218 GHz. We also compare planet and point source measurements from the two experiments.
    Journal of Cosmology and Astroparticle Physics 03/2014; · 6.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We evaluate the modulation of cosmic microwave background polarization using a rapidly rotating, half-wave plate (HWP) on the Atacama B-Mode Search. After demodulating the time-ordered-data (TOD), we find a significant reduction of atmospheric fluctuations. The demodulated TOD is stable on time scales of 500-1000 s, corresponding to frequencies of 1-2 mHz. This facilitates recovery of cosmological information at large angular scales, which are typically available only from balloon-borne or satellite experiments. This technique also achieves a sensitive measurement of celestial polarization without differencing the TOD of paired detectors sensitive to two orthogonal linear polarizations. This is the first demonstration of the ability to remove atmospheric contamination at these levels from a ground-based platform using a rapidly rotating HWP.
    The Review of scientific instruments 02/2014; 85(2):024501. · 1.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: High-resolution GBT+MUSTANG observations of the Sunyaev-Zel'dovich Effect (SZE) at 90GHz have revealed complex substructure in the hot intra-cluster medium (ICM) of several massive galaxy clusters. The SZE is a nearly redshift-independent, complementary probe of the ICM to X-ray emission and combined analyses of both data sets provide a better understanding of astrophysical phenomena such as shocks, cold fronts, and sloshing of the gas within a cluster's dark matter potential. Understanding how substructure, especially in merging clusters, affects the scaling between SZE flux and total cluster mass is essential to placing tight constraints on cosmological parameters with SZE surveys. First, I will present recent results from MUSTANG observations of the SZE in MACS J0647.7+7015 and MACS J1206.2-0847. In order to better characterize the cluster dynamics, a number of models are jointly fit in the map domain using a least squares fitting routine. We compare our data to the best-fit generalized Navarro, Frenk, and White (gNFW) profiles from Bolocam and find evidence for a steeper central slope in both clusters than had previously been determined. Furthermore, MUSTANG detects significant features near the core of both clusters that are suggestive of substructure. High-resolution SZE measurements out to larger angular scales will be necessary to better understand the nature of features like these. With this in mind, we are building MUSTANG-1.5, a new bolometer camera which offers many advantages over MUSTANG and unlocks SZE's true potential as an independent tool to understand the ICM on a broad range of angular scales and with a noise level better than any current instrument. I will present a status report on the progress of the receiver, which we aim to install on the Green Bank Telescope (GBT) for first light this season. The improvement in sensitivity and much larger field-of-view (3.5' compared to 35" for MUSTANG) will enable us to pursue a far more comprehensive observing program including the first ever detection of X-ray cavities via the SZE and high-resolution measurements of the ICM out to unprecedented radii.
    01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We measure the cross-correlation of cosmic microwave background lensing convergence maps derived from Atacama Cosmology Telescope data with galaxy lensing convergence maps as measured by the Canada-France-Hawaii Telescope Stripe 82 Survey. The CMB-galaxy lensing cross power spectrum is measured for the first time with a significance of 3.2{\sigma}, which corresponds to a 16% constraint on the amplitude of density fluctuations at redshifts ~ 0.9. With upcoming improved lensing data, this novel type of measurement will become a powerful cosmological probe, providing a precise measurement of the mass distribution at intermediate redshifts and serving as a calibrator for systematic biases in weak lensing measurements.
    11/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve sigma(sum m_nu) = 16 meV and sigma(N_eff) = 0.020. Such a mass measurement will produce a high significance detection of non-zero sum m_nu, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics --- the origin of mass. This precise a measurement of N_eff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that N_eff = 3.046.
    Astroparticle Physics 09/2013; · 4.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments---the theory of cosmic inflation---and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1% of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5-sigma measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.
    Astroparticle Physics 09/2013; · 4.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We measure a significant correlation between the thermal Sunyaev-Zel'dovich effect in the Planck and WMAP maps and an X-ray cluster map based on ROSAT. We use the 100, 143 and 343 GHz Planck maps and the WMAP 94 GHz map to obtain this cluster cross spectrum. We check our measurements for contamination from dusty galaxies using the cross correlations with the 220, 545 and 843 GHz maps from Planck. Our measurement yields a direct characterization of the cluster power spectrum over a wide range of angular scales that is consistent with large cosmological simulations. The amplitude of this signal depends on cosmological parameters that determine the growth of structure (\sigma_8 and \Omega_M) and scales as \sigma_8^7.4 and \Omega_M^1.9 around the multipole (ell) ~ 1000. We constrain \sigma_8 and \Omega_M from the cross-power spectrum to be \sigma_8 (\Omega_M/0.30)^0.26 = 0.8 +/- 0.02. Since this cross spectrum produces a tight constraint in the \sigma_8 and \Omega_M plane the errors on a \sigma_8 constraint will be mostly limited by the uncertainties from external constraints. Future cluster catalogs, like those from eRosita and LSST, and pointed multi-wavelength observations of clusters will improve the constraining power of this cross spectrum measurement. In principle this analysis can be extended beyond \sigma_8 and \Omega_M to constrain dark energy or the sum of the neutrino masses.
    Journal of Cosmology and Astroparticle Physics 09/2013; · 6.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent observations have accumulated compelling evidence that some short gamma-ray bursts (SGRBs) are associated with the mergers of neutron star (NS) binaries. This would indicate that the SGRB event is associated with a gravitational-wave (GW) signal corresponding to the final inspiral of the compact binary. In addition, the radioactive decay of elements produced in NS binary mergers may result in transients visible in the optical and infrared with peak luminosities on hours-days timescales. Simultaneous observations of the inspiral GWs and signatures in the electromagnetic band may allow us to directly and independently determine both the luminosity distance and redshift to a binary. These standard sirens (the GW analog of standard candles) have the potential to provide an accurate measurement of the low-redshift Hubble flow. In addition, these systems are absolutely calibrated by general relativity, and therefore do not experience the same set of astrophysical systematics found in traditional standard candles, nor do the measurements rely on a distance ladder. We show that 15 observable GW and EM events should allow the Hubble constant to be measured with 5% precision using a network of detectors that includes advanced LIGO and Virgo. Measuring 30 beamed GW-SGRB events could constrain H_0 to better than 1%. When comparing to standard Gaussian likelihood analysis, we find that each event's non-Gaussian posterior in H_0 helps reduce the overall measurement errors in H_0 for an ensemble of NS binary mergers.
    07/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a catalog of 191 extragalactic sources detected by the Atacama Cosmology Telescope (ACT) at 148 GHz and/or 218 GHz in the 2008 Southern survey. Flux densities span 14-1700 mJy, and we use source spectral indices derived using ACT-only data to divide our sources into two sub-populations: 167 radio galaxies powered by central active galactic nuclei (AGN), and 24 dusty star-forming galaxies (DSFGs). We cross-identify 97% of our sources (166 of the AGN and 19 of the DSFGs) with those in currently available catalogs. When combined with flux densities from the Australian Telescope 20 GHz survey and follow-up observations with the Australia Telescope Compact Array, the synchrotron-dominated population is seen to exhibit a steepening of the slope of the spectral energy distribution from 20 to 148 GHz, with the trend continuing to 218 GHz. The ACT dust-dominated source population has a median spectral index of 3.7+0.62-0.86, and includes both local galaxies and sources with redshifts as great as 5.6. Dusty sources with no counterpart in existing catalogs likely belong to a recently discovered subpopulation of DSFGs lensed by foreground galaxies or galaxy groups.
    Monthly Notices of the Royal Astronomical Society 06/2013; · 4.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent data from the WMAP, ACT and SPT experiments provide precise measurements of the cosmic microwave background temperature power spectrum over a wide range of angular scales. The combination of these observations is well fit by the standard, spatially flat LCDM cosmological model, constraining six free parameters to within a few percent. The scalar spectral index, n_s = 0.9690 +/- 0.0089, is less than unity at the 3.6 sigma level, consistent with simple models of inflation. The damping tail of the power spectrum at high resolution, combined with the amplitude of gravitational lensing measured by ACT and SPT, constrains the effective number of relativistic species to be N_eff = 3.28 +/- 0.40, in agreement with the standard model's three species of light neutrinos.
    Physical Review D 02/2013; 85:103012. · 4.69 Impact Factor

Publication Stats

1k Citations
333.88 Total Impact Points

Institutions

  • 2013–2014
    • University of KwaZulu-Natal
      • School of Mathematics, Statistics and Computer Science
      Port Natal, KwaZulu-Natal, South Africa
  • 2010–2014
    • Princeton University
      • Department of Astrophysical Sciences
      Princeton, New Jersey, United States
    • University of Pennsylvania
      • Department of Physics and Astronomy
      Philadelphia, Pennsylvania, United States
  • 2004–2012
    • University of Toronto
      • Canadian Institute for Theoretical Astrophysics
      Toronto, Ontario, Canada
  • 2011
    • University of Nottingham
      • School of Physics and Astronomy
      Nottigham, England, United Kingdom
  • 2002–2011
    • National Radio Astronomy Observatory
      Charlottesville, Virginia, United States
  • 2001–2011
    • California Institute of Technology
      • Department of Astronomy
      Pasadena, California, United States