John G Bruno

Texas Tech University Health Sciences Center, Lubbock, TX, United States

Are you John G Bruno?

Claim your profile

Publications (51)86.1 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Fifty-two candidate DNA aptamer sequences were selected for binding to the cardiovascular biomarker B-type or brain natriuretic peptide (BNP). Candidate aptamers were screened to rank their relative affinities against BNP by an aptamer-based ELISA-like microplate assay (ELASA). The highest affinity aptamers from ELASA screening were also paired in all possible combinations and screened for electrochemiluminescence (ECL) assay potential in capture aptamer-magnetic bead and ruthenium trisbipyridine (Ru(bpy)32 +)-reporter aptamer sandwich formats. The top ECL sandwich combinations utilized the same aptamer pair in either capture or reporting roles with nanogram to low picogram per mL levels of detection even in 50% human serum. ECL assay sensitivity and linearity even in 50% human serum suggest that the aptamer-based assay is at least comparable to other reported immunoassays for BNP.
    Microchemical Journal 01/2014; 115:32–38. · 2.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A fluorescent peroxidase-linked DNA aptamer-magnetic bead sandwich assay is described which detects as little as 100 ng of soluble protein extracted from Leishmania major promastigotes with a high molarity chaotropic salt. Lessons learned during development of the assay are described and elucidate the pros and cons of using fluorescent dyes or nanoparticles and quantum dots versus a more consistent peroxidase-linked Amplex Ultra Red (AUR; similar to resazurin) fluorescence version of the assay. While all versions of the assays were highly sensitive, the AUR-based version exhibited lower variability between tests. We hypothesize that the AUR version of this assay is more consistent, especially at low analyte levels, because the fluorescent product of AUR is liberated into bulk solution and readily detectable while fluorophores attached to the reporter aptamer might occasionally be hidden behind magnetic beads near the detection limit. Conversely, fluorophores could be quenched by nearby beads or other proximal fluorophores on the high end of analyte concentration, if packed into a small area after magnetic collection when an enzyme-linked system is not used. A highly portable and rechargeable battery-operated fluorometer with on board computer and color touchscreen is also described which can be used for rapid (<1 h) and sensitive detection of Leishmania promastigote protein extracts (∼100 ng per sample) in buffer or sandfly homogenates for mapping of L. major parasite geographic distributions in wild sandfly populations.
    Journal of Fluorescence 11/2013; · 1.79 Impact Factor
  • Source
    John G Bruno
    [Show abstract] [Hide abstract]
    ABSTRACT: The potential to emulate or enhance antibodies with nucleic acid aptamers while lowering costs has prompted development of new aptamer-protein, siRNA, drug, and nanoparticle conjugates. Specific focal points of this review discuss DNA aptamers covalently bound at their 3' ends to various proteins for enhanced stability and greater pharmacokinetic lifetimes in vivo. The proteins can include Fc tails of IgG for opsonization, and the first component of complement (C1q) to trigger complement-mediated lysis of antibiotic-resistant Gram negative bacteria, cancer cells and possibly some parasites during vulnerable stages. In addition, the 3' protein adduct may be a biotoxin, enzyme, or may simply be human serum albumin (HSA) or a drug known to bind HSA, thereby retarding kidney and other organ clearance and inhibiting serum exonucleases. In this review, the author summarizes existing therapeutic aptamer conjugate categories and describes his patented concept for PCR-based amplification of double-stranded aptamers followed by covalent attachment of proteins or other agents to the chemically vulnerable overhanging 3' adenine added by Taq polymerase. PCR amplification of aptamers could dramatically lower the current $2,000/gram cost of parallel chemical oligonucleotide synthesis, thereby enabling mass production of aptamer-3'-protein or drug conjugates to better compete against expensive humanized monoclonal antibodies.
    Pharmaceuticals 01/2013; 6(3):340-357.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Nucleic acid aptamers have long demonstrated the capacity to bind viral envelope proteins and to inhibit the progression of pathogenic virus infections. Here we report on initial efforts to develop and screen DNA aptamers against recombinant envelope proteins or synthetic peptides and whole inactivated viruses from several virulent arboviruses including Chikungunya, Crimean-Congo hemorrhagic fever (CCHF), dengue, tickborne encephalitis and West Nile viruses. We also analyzed sequence data and secondary structures for commonalities that might reveal consensus binding sites among the various aptamers. Some of the highest affinity and most specific aptamers in the down-selected libraries were demonstrated to have diagnostic utility in lateral flow chromatographic assays and in a fluorescent aptamer-magnetic bead sandwich assay. Some of the reported aptamers may also be able to bind viral envelope proteins in vivo and therefore may have antiviral potential in passive immunity or prophylactic applications. RESULTS: Several arbovirus DNA aptamer sequences emerged multiple times in the various down selected aptamer libraries thereby suggesting some consensus sequences for binding arbovirus envelope proteins. Screening of aptamers by enzyme-linked aptamer sorbent assay (ELASA) was useful for ranking relative aptamer affinities against their cognate viral targets. Additional study of the aptamer sequences and secondary structures of top-ranked anti-arboviral aptamers suggest potential virus binding motifs exist within some of the key aptamers and are highlighted in the supplemental figures for this article. One sequence segment (ACGGGTCCGGACA) emerged 60 times in the anti-CCHF aptamer library, but nowhere else in the anti-arbovirus library and only a few other times in a larger library of aptamers known to bind bacteria and rickettsia or other targets. Diagnostic utility of some of the aptamers for arbovirus detection in lateral flow chromatographic assays and a fluorescent sandwich assay on the surface of magnetic microbeads is also demonstrated. CONCLUSIONS: This article catalogues numerous DNA aptamer sequences which can bind various important pathogenic arboviruses and have, in some cases, already demonstrated diagnostic potential. These aptamer sequences are proprietary, patent-pending, and partially characterized. Therefore, they are offered to the scientific community for potential research use in diagnostic assays, biosensor applications or for possible passive immunity and prophylaxis against pathogenic viruses.
    BMC Research Notes 11/2012; 5(1):633.
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study was designed to characterize binding of a DNA aptamer to breast cancer cells and to test whether that aptamer could be used to kill target cells in vitro as part of an aptamer-C1q protein conjugate by coupling to the classic complement cascade. A biotinylated DNA aptamer designated MUC1-5TR-1 was shown to decorate the plasma membranes of human breast adenocarcinoma (MCF7) cells via fluorescence confocal microscopy. Biotinylated aptamer binding successfully initiated the classical complement pathway leading to complement fixation on the target cells via a streptavidin-C1q conjugate as previously reported. Förster Resonance Energy Transfer (FRET) measurements demonstrated membrane depolarization upon aptamer binding, providing indirect evidence of membrane attack complex (MAC) formation as a result of aptamer binding. Transmission electron microscopy (TEM) and immunogold labeling confirmed that aptamer-mediated complement fixation results in MAC formation on the plasma membrane, leading to osmotic swelling and cell death. This approach may provide a much less toxic and more precisely targeted "antibody-like" treatment for cancers by coupling to the patient's innate immune system in much the same way as more expensive humanized monoclonal antibodies.
    Nucleic acid therapeutics. 08/2012; 22(4):275-82.
  • John G Bruno, Maria P Carrillo
    [Show abstract] [Hide abstract]
    ABSTRACT: A library of 92 DNA aptamer sequences was developed against Bacillus anthracis (nonpathogenic Sterne strain) spores and anthrose sugar immobilized on magnetic beads. The selected DNA sequences were studied for similarities and potential binding pockets between the B. anthracis spore and anthrose aptamers. Several recurring loop structures were identified and tested for their potential to act as aptamer beacons when labeled with TYE 665 dye on their 5' ends and Iowa Black quencher on their 3' ends. Of these candidate sequences, two beacons designated BAS-6F and BAS-6R emerged which gave strong fluorescence responses at high spore concentrations (greater than 30,000 spores/ml). These aptamer beacons also detect B. cereus and B. thuringiensis spores with greater fluorescence intensity, but do not strongly detect vegetative cells from an array of other bacterial species. BAS-6F and 6R are also not capable of detecting pure anthrose, thereby probably ruling that epitope out as a spore surface target for these particular beacons. While not extremely sensitive, the BAS-6F and 6R aptamer beacons are potentially valuable for rapid presumptive detection of anthrax or Bacillus spores in suspect powders or bioterrorist activity where spore concentrations are anticipated to be high. The sequence similarities of these beacons to other published Bacillus spore aptamers are also discussed.
    Journal of Fluorescence 01/2012; 22(3):915-24. · 1.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sixty candidate DNA aptamers were developed against botulinum neurotoxin (BoNT) type A light chain (LC) from ten rounds of selection, resulting in several identical sequences. Secondary structures of the identical aptamers were compared to structures of previously reported BoNT A DNA aptamers. A series of ten candidate loop structures were selected from this comparison as potential binding pockets and aptamer beacons. These candidate beacons were synthesized with 5'-TYE 665 and 3'-Iowa Black quencher labels for comparison of fluorescence levels as a function of BoNT A LC concentration. Only three of the ten candidates exhibited any fluorescence response to increasing levels of BoNT A LC. However, of the two most responsive candidates, one represented a subset loop of the larger more intensely fluorescent double-looped structure, designated Beacon 10. This beacon yielded a lower limit of detection of 1 ng/mL in buffer using a spectrofluorometer and a portable handheld fluorometer, but also responded substantially to BoNT A, B, E holotoxins and heavy or light chain components even in a dilute soil suspension, but not in 50% human serum. Beacon 10 did not respond strongly to a variety of other divergent peptides, suggesting that it is relatively specific to the level of botulinum toxins and is only useful for environmental testing. Beacon 10 also shared short sequence segments with other published BoNT aptamer DNA sequences, suggesting that these may be points of physical contact between the aptamers and BoNTs.
    Biosensors & bioelectronics 10/2011; 31(1):240-3. · 5.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A dominant aptamer loop structure from a library of nearly 100 candidate aptamer sequences developed against immobilized 25-hydroxyvitamin D(3) (calcidiol) was converted into a 5'-TYE 665 and 3'-Iowa black-labelled aptamer beacon. The aptamer beacon exhibited a mild 'lights on' reaction in buffer as a function of increasing concentrations of several vitamin D analogues and metabolites, with a limit of detection of approximately 200 ng/mL, and was not specific for any particular congener. In 10% or 50% human serum, the same aptamer beacon inverted its fluorescence behaviour to become a more intense 'lights off' reaction with an improved limit of detection in the range 4-16 ng/mL. We hypothesized that this drastic change in fluorescence behaviour was due to the presence of creatinine and urea in serum, which might destabilize the quenched beacon, causing an increase in fluorescence followed by decreasing fluorescence as a function of vitamin D concentrations that may bind and quench increasingly greater fractions of the denatured beacons. However, the results of several control experiments in the presence of physiological or greater concentrations of creatinine and urea, alone or combined in buffer, failed to produce the beacon fluorescence inversion. Other possible mechanistic hypotheses are also discussed.
    Luminescence 06/2011; 27(1):51-8. · 1.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel DNA aptamer beacon is described for quantification of a 26-amino acid C-telopeptide (CTx) of human type I bone collagen. One aptamer sequence and its reverse complement dominated the aptamer pool (31.6% of sequenced clones). Secondary structures of these aptamers were examined for potential binding pockets. Three-dimensional computer models which analyzed docking topologies and binding energies were in agreement with empirical fluorescence experiments used to select one candidate loop for beacon assay development. All loop structures from the aptamer finalists were end-labeled with TYE 665 and Iowa Black quencher for comparison of beacon fluorescence levels as a function of CTx concentration. The optimal beacon, designated CTx 2R-2h yielded a low ng/ml limit of detection using a commercially available handheld fluorometer. The CTx aptamer beacon bound full-length 26-amino acid CTx peptide, but not a shorter 8-amino acid segment of CTx peptide which is a common target for commercial CTx ELISA kits. The prototype assay was shown to detect CTx peptide from human urine after creatinine and urea were removed by size-exclusion chromatography to prevent nonspecific denaturing of the aptamer beacon. This work demonstrates the potential of aptamer beacons to be utilized for rapid and sensitive bone health monitoring in a handheld or point-of-care format.
    Journal of Fluorescence 06/2011; 21(5):2021-33. · 1.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Several different approaches have been taken to development of homogeneous fluorescent aptamer assays including end-labeled beacons and signaling aptamers which are intrinsically quenched by nucleotides. Two new strategies dubbed "intrachain" and "competitive" FRET-aptamer assays are summarized in this review. Intrachain and competitive FRET-aptamers can be engineered on the molecular level through a series exploratory experiments involving prior knowledge of aptamer secondary or tertiary structures and hypotheses about aptamer conformational changes. However, there is an intrinsic risk of altering aptamer affinity or specificity associated with chemical modifications of an aptamer. Natural selection methods for FRET-aptamers have also been devised to potentially obviate the chemical modification problem. The naturally selected aptamers are subjected to fluorophore (F)- and or quencher (Q)-conjugated nucleotide triphosphate (NTP) incorporation by polymerase chain reaction (PCR) with permissive polymerases such as Deep Vent exo-, but still demonstrate sensitive and specific assay performance despite modified bases, because they are ultimately selected after decoration with F and Q. This paper summarizes work in this area and presents some new examples of the engineered and naturally selected FRET-aptamers for detection of vitamin D.
    Combinatorial chemistry & high throughput screening 05/2011; 14(7):622-30. · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Detection of athletes who use synthetic human growth hormone (hGH; or somatotropin) to enhance physical strength and obtain an advantage in competitive sports is a formidable problem, as rhGH is virtually identical to the natural pituitary hormone. However, some post-translational and other modifications have been documented by chromatographic separation and mass spectrometry (MS) in a small percentage of rhGH. In the present work, development of DNA aptamers against research-grade rhGH and natural hGH with adsorption of the rhGH aptamers against natural hGH was shown to produce a small family of aptamer sequences that bound consistently with greater affinity to rhGH over a low nanogram-to-microgram range in ELISA-like microplate assays. This collection of rhGH discriminatory aptamer sequences shared some short sequence segments and secondary structural features. The top rhGH discriminatory aptamers also appeared to cross-react with human myoglobin and BSA but not with bone collagen peptides and an unrelated viral envelope peptide. The cross-reactivity results suggested several strings of up to five consecutive amino acids that might serve as common epitopes for aptamer binding. SDS-PAGE revealed that the rhGH existed largely as a 45-kDa dimer, and the natural hGH was almost exclusively monomeric. The existence of the rhGH dimer suggests that a discontinuous "bridge" epitope may exist on the rhGH, which spans the subunits, thereby accounting somewhat for the difference in detection. Overall, these results suggest that aptamers might be useful for routine, presumptive laboratory screening to identify athletes who are potentially cheating by administration of rhGH.
    Journal of biomolecular techniques: JBT 04/2011; 22(1):27-36.
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel high-throughput screening method is described in which a family of DNA aptamers selected against E. coli outer membrane proteins (OMPs) is subjected to PCR in the presence of fluorophore-dUTP conjugates using Deep Vent® exo- polymerase. The fluorophore-doped aptamers and their complementary strands are then heated to render them single-stranded and screened in filter well microtiter plates for fluorescence resonance energy transfer (FRET) assay potential. Using this system, a superior competitive FRET-aptamer designated EcO 4R was identified and the location of its putative binding pocket was determined by individually testing FRET potential in each of the secondary loop structures. By labeling the binding pocket with Alexa Fluor (AF) 647 and binding the aptamer to heavily Black Hole Quencher-3 (BHQ-3)-labeled E. coli bacteria, detection of as few as 30 live unlabeled E. coli per ml was achieved in a competitive displacement FRET assay format. The far red fluorescence emission enables detection in largely blue-green autofluorescent matrices. In addition, the competitive transfer of AF 647-EcO-4R aptamer to unlabeled E. coli cells after a 15 min equilibration period was verified by fluorescence microscopy. The present study also demonstrated that high aptamer affinity is not well correlated with competitive FRET potential.
    Journal of Fluorescence 05/2010; 20(6):1211-23. · 1.79 Impact Factor
  • Source
    John G Bruno
    [Show abstract] [Hide abstract]
    ABSTRACT: A partially overlapping population of random sequence 60mer DNA molecules consisting of many concatamers of varied lengths was spatially separated in one and two dimensions by electrophoresis in polyacrylamide and transferred to nitrocellulose membranes. The spatially separated library serves as a potential sensor interface on which many different molecular recognition events or target analyte-binding patterns may emerge, thereby theoretically representing a "universal sensor" surface. The separated DNA library has been referred to as a DNA combinatorial array recognition surface or "CARS." After UV baking and various fluorescence staining or fluorescent probe interactions, the one-dimensional (1-D) and 2-D membrane-bound CARS were digitally photographed and subjected to image analysis with National Institutes of Health Image-Java software. Image analysis demonstrated relatively consistent and more similar spatial fluorescence patterns within CARS analyte treatment groups but noteworthy pattern differences before and after analyte addition and between different analyte treatments. Taken together, these data suggest a potential role for CARS as a novel, inexpensive, self-assembling universal molecular recognition surface that could be coupled to sophisticated Bayesian or other pattern recognition algorithms to classify analytes or make specific identifications, much like the senses of smell or taste.
    Journal of biomolecular techniques: JBT 04/2010; 21(1):35-43.
  • John Gordon Bruno
    [Show abstract] [Hide abstract]
    ABSTRACT: Nucleic acid aptamers are regarded as rivals for antibodies and as such are being investigated for their therapeutic potential. In the present work, it is shown that two different high-affinity DNA aptamers developed previously by Ferreira et al. against MUC1 antigen (designated MUC1-5TR-1 and MUC1-S1.3/S2.2) on MCF7 breast cancer cells can be linked to the first component of complement (C1q) via a biotin–streptavidin system and induce significant killing of MCF7 cells in vitro. Cell viability was assessed by Trypan blue uptake and absorbance at 590 nm of stained cells following buffer washes and lysis in 1% SDS. While the killing effect is demonstrable versus various controls, dependent on aptamer dose, and reproducible, it appears to kill maximally about half of treated MCF7 cells. Possible reasons for the marginal killing effect include antigenic shedding in vitro and membrane-bound complement regulatory proteins (mCRPs) on the cell surface such as CD46, CD55, and CD59 which act to inhibit complement-mediated lysis of cells. Future in vitro research could benefit from application of mCRP-specific aptamers in combination with anti-MUC1 aptamers to overcome surface protective mechanisms while attacking the plasma membrane of MCF7 cells or other MUC1-expressing cancer cells. However, in vivo such a combination could have deleterious effects on normal MUC1-expressing cells as well.
    In Vitro Cellular & Developmental Biology - Animal 11/2009; 46(2):107-13. · 1.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Twelve rounds of systematic evolution of ligands by exponential enrichment (SELEX) were conducted against a magnetic bead conjugate of the para-aminophenylpinacolylmethylphosphonate (PAPMP) derivative of the organophosphorus (OP) nerve agent soman (GD). The goal was to develop DNA aptamers that could scavenge GD in vivo, thereby reducing or eliminating the toxic effects of this dangerous compound. Aptamers were sequenced and screened in peroxidase-based colorimetric plate assays after rounds 8 and 12 of SELEX. The aptamer candidate sequences exhibiting the highest affinity for the GD derivative from round 8 also reappeared in several clones from round 12. Each of the highest affinity PAPMP-binding aptamers also bound methylphosphonic acid (MPA). In addition, the aptamer with the highest overall affinity for PAPMP carried a sequence motif (TTTAGT) thought to bind MPA based on previously published data (J. Fluoresc 18: 867-876, 2008). This sequence motif was found in several other relatively high affinity PAPMP aptamer candidates as well. In studies with the nerve agent GD, pre-incubation of a large molar excess of aptamer candidates failed to protect human butyrylcholinesterase (BuChE) from inhibition. With the aid of three-dimensional molecular modeling of the GD derivative it appears that a hydrophilic cleft sandwiched between the pinacolyl group and the p-aminophenyl ring might channel nucleotide interactions to the phosphonate portion of the immobilized GD derivative. However, bona fide GD free in solution may be repulsed by the negative phosphate backbone of aptamers and rotate its phosphonate and fluorine moieties away from the aptamer to avoid being bound. Future attempts to develop aptamers to GD might benefit from immobilizing the pinacolyl group of bona fide GD to enhance exposure of the phosphonate and fluorine to the random DNA library.
    Journal of Molecular Recognition 01/2009; 22(3):197-204. · 3.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA aptamers were developed against MgCl(2)-extracted surface proteins from Campylobacter jejuni. The two highest affinity aptamers were selected for use in a magnetic bead (MB) and red quantum dot (QD)-based sandwich assay scheme. The assay was evaluated using both heat-killed and live C. jejuni and exhibits detection limits as low as an average of 2.5 colony forming unit (cfu) equivalents in buffer and 10-250 cfu in various food matrices. The assay exhibits low cross-reactivity with bacterial species outside the Campylobacter genus, but exhibits substantial cross-reactivity with C. coli and C. lari. The assay was evaluated with a spectrofluorometer and a commercially available handheld fluorometer, which yielded comparable detection limits and ranges. Remarkably, the sandwich assay components adhere to the inside face of polystyrene cuvettes even in food matrices near neutral pH, thereby enabling a rapid homogeneous assay, because fluorescence is concentrated to a small, thin planar area and background fluorescence from the bulk solution is minimized. The plastic cuvette-adherent technology coupled to a sensitive handheld fluorometer may enable rapid (15-20 min), portable detection of foodborne pathogens from "farm-to-fork" by obviating the slow enrichment culture phase used by other food safety tests.
    Journal of Fluorescence 01/2009; 19(3):427-35. · 1.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Here we describe a new DNA capture element (DCE) sensing system, based on the quenching and dequenching of a double-stranded aptamer. This system shows very good sensitivity and thermal stability. While quenching, dequenching, and separating the DCE systems made from different aptamers (all selected by SELEX), an alternative method to rapidly select aptamers was developed-the Aptamer Selection Express (ASExp). This process has been used to select aptamers against different types of targets (Bacillus anthracis spores, Bacillus thuringiensis spores, MS-2 bacteriophage, ovalbumin, and botulinum neurotoxin). The DCE systems made from botulinum neurotoxin aptamers selected by ASExp have been investigated. The results of this investigation indicate that ASExp can be used to rapidly select aptamers for the DCE sensing system.
    Journal of biomolecular techniques: JBT 01/2009; 19(5):311-9.
  • Source
    John G Bruno, Randy Crowell
    [Show abstract] [Hide abstract]
    ABSTRACT: Attachment of proteins to the 3' end of DNA increases stability of the DNA in serum and retards clearance of DNA by major organs, thereby enhancing in vivo half-life and therapeutic potential of DNA. Unfortunately, the length of DNA molecules that can be produced with 3 ' modifications by solid-phase synthesis for protein attachment is limited to 45-60 nucleotides due to uncertainties about sequence fidelity for longer oligonucleotides. Here we describe selective covalent coupling of proteins or other molecules to the 3'-adenine overhang of unlabeled and fluorophore-labeled double-stranded polymerase chain reaction products putatively at the N6 position of adenine using 2.5% glutaraldehyde at pH 6.0 and 4 degrees C for at least 16 h. Gel mobility shift analyses and fluorescence analyses of the shifted bands supported conjugate formation between double-stranded polymerase chain reaction products and beta2-microglobulin. In addition, blunt-ended DNA ladder fragments treated with glutaraldehyde at 4 degrees C showed no evidence of DNA-DNA or DNA-protein conjugate formation. With the present cold glutaraldehyde technique, longer DNA-3'-protein conjugates might be easily mass-produced. The protein portion of a DNA-3'-protein conjugate could possess functionality as well, such as receptor binding for cell entry, cytotoxicity, or opsonization.
    Journal of biomolecular techniques: JBT 08/2008; 19(3):177-83.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Encapsulated bacteria such as virulent strains of Bacillus anthracis impair phagocytosis with their capsules unless opsonized by antibodies. Poly-gamma-D-glutamic acid (gamma-PDGA) is the major component of the B. anthracis capsule. In this work, poly-alpha-D-glutamic acid (alpha-PDGA)-coated magnetic beads (MBs) were used as surrogates to simulate vegetative B. anthracis cells and avoid the hazards of working with virulent bacteria. DNA aptamers were developed against the alpha-linked PDGA-MBs and sequenced. Four of the most frequent candidate aptamer sequences in the pool were coupled at their 5' ends to Fc fragments of murine IgG to act as artificial antibodies. The effects of candidate aptamer-Fc conjugate addition on macrophage attachment and internalization of alpha-PDGA-MBs were tested on P388D1 and RAW 264.7 murine macrophage lines by spectrofluorometric and image analysis techniques. P388D1 cells were not able to internalize the alpha-PDGA-MBs, but attachment to alpha-PDGA-MBs was enhanced by the conjugates to varying degrees. Ingestion of alpha-PDGA-MBs by RAW 264.7 cells in the presence of several different candidate aptamer-Fc conjugates demonstrated a statistically significant (p < 0.01) increase in phagocytic index (P.I.) up to threefold in the first 30 min of exposure to alpha-PDGA-MBs. This preliminary study using alpha-linked instead of gamma-linked PDGA provides proof-of-concept for future work in the new area of hybrid DNA aptamer-protein constructs as potential opsonins.
    Journal of Biomedical Materials Research Part A 07/2008; 90(4):1152-61. · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We sought to develop a novel competitive fluorescence resonance energy transfer (FRET)-aptamer-based strategy for detection of foot-and-mouth (FMD) disease within minutes. A 14-amino-acid peptide from the VP1 structural protein, which is conserved among 16 strains of O-serotype FMD virus, was synthesized and labeled with Black Hole Quencher-2 (BHQ-2) dye. Polyclonal FMD DNA aptamers were labeled with Alexa Fluor 546-14-dUTP by polymerase chain reaction and allowed to bind the BHQ-2-peptide conjugate. Following purification of the FRET-aptamer-peptide complex, a "lights off" response was observed within 10 minutes and was sensitive to a level of 25-250 ng/mL of FMD peptide. Ten candidate aptamers were sequenced from the polyclonal family. The aptamer candidates were screened in an enzyme-based plate assay. A high- and low-affinity aptamer candidate were each labeled with Alexa Fluor 546-14-dUTP by asymmetric polymerase chain reaction and used in the competitive FRET assay, but neither matched the sensitivity of the polyclonal FRET response, indicating the need for further screening of the aptamer library.
    Journal of biomolecular techniques: JBT 05/2008; 19(2):109-15.

Publication Stats

610 Citations
86.10 Total Impact Points

Institutions

  • 1998–2000
    • Texas Tech University Health Sciences Center
      • Department of Radiology
      Lubbock, TX, United States
  • 1998–1999
    • University of Texas Health Science Center at San Antonio
      • Department of Radiology
      San Antonio, Texas, United States
  • 1996
    • Tyndall Air Force Research Laboratory
      Tyndall Air Force Base, Florida, United States