Jinyu Chi

Harbin Medical University, Harbin, Heilongjiang Sheng, China

Are you Jinyu Chi?

Claim your profile

Publications (5)10.68 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Cyclosporine (CsA) has become a mainstay for immune suppression of organ transplants. It is known that patients receiving CsA manifest increased growth of aggressive cardiotoxicity. We have demonstrated that CsA induces myocardium cell apoptosis in vivo and vitro. Recently, dishevelled-1 (Dvl-1) protein, which is a cytoplasmic mediator of Wnt/β-catenin signaling, was explored in cardiac diseases. However, whether Dvl-1 is involved in CsA-induced apoptosis remains to be determined. The aim of this study was to explore the role of Dvl-1 in CsA-induced apoptosis in H9c2 cardiomyoblast cells and to investigate the role of the Wnt/β-catenin signaling cascade in this progress. H9c2 cells were treated with CsA in dose and time-dependent manners. We found that the appropriate concentrations and time-points of CsA-induced the expression of Dvl-1 and subsequent up-regulation of β-catenin and c-Myc, which is consistent with previously demonstrated concentrations and time-points when H9c2 cells apoptosis occurred. Then, cells were transfected with small interfering RNA (siRNA) against Dvl-1 and stimulated with previously demonstrated concentration of CsA. Dvl-1 down-regulation decreased the apoptotic rate, caspase-3 activity, and the Bax/Bcl-2 ratio in H9c2 cells treated with CsA. Furthermore, knocking down the expression of Dvl-1 partially suppressed the activity of the Wnt/β-catenin pathway. Moreover, we further deleted the downstream member β-catenin by specific siRNA, and found that CsA-induced the Bax/Bcl-2 ratio and the expression of c-Myc, which were attenuated. Our results are the first to unveil this novel aspect of Dvl-1 signaling. In addition, these data provide insight into the pathogenesis and the therapeutic strategies of CsA-induced myocardial injury.
    Molecular and Cellular Biochemistry 11/2012; · 2.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In our previous study, we have demonstrated that tissue factor pathway inhibitor (TFPI) gene could induce vascular smooth muscle cell (VSMC) apoptosis. This study was conducted to investigate whether the overexpression of the TFPI gene can induce VSMC apoptosis by inhibiting JAK-2/STAT-3 pathway phosphorylation and thereby inhibiting the expression of such downstream targets as the apoptotic protein Bcl-2 and cell cycle protein cyclin D1. The effect of TFPI on the expression of survivin, a central molecule in cell survival, was also investigated. Rat VSMCs were infected with recombinant adenovirus containing either the TFPI (Ad-TFPI) or LacZ (Ad-LacZ) gene or DMEM in vitro. TFPI expression was detected by ELISA. TUNEL staining and electron microscope were carried out to determine the apoptosis of VSMCs. The expression levels of JAK-2, p-JAK-2, STAT-3, p-STAT-3, cyclin D1, Bcl-2 and survivin were examined by western blot analysis. TFPI protein was detected in the TFPI group after gene transfer and the peak expression was at the 3rd day. At the 3rd, 5th and 7th days after gene transfer, the apoptotic rates by TUNEL assay in the TFPI group were 10.91 ± 1.66%, 13.46 ± 1.28% and 17.04 ± 1.95%, respectively, whereas those in the LacZ group were 3.28 ± 0.89%, 4.01 ± 0.72% and 4.89 ± 1.17%, respectively. We observed cell contraction, slight mitochondrial swelling, nuclear pyknosis and apoptotic body formation in TFPI-treated VSMCs using electron microscopy. JAK-2, p-JAK-2, STAT-3, p-STAT-3, cyclin D1 and Bcl-2, which are all involved in the JAK-2/STAT-3 pathway, were detected in the VSMCs on the 3rd, 5th and 7th days after gene transfer, which is consistent with previously demonstrated time points when VSMCs apoptosis occurred. The expression levels of p-JAK-2, p-STAT-3, cyclin D1 and Bcl-2 were significantly decreased over time in the TFPI group (each P<0.05) but not in the Ad-LacZ and DMEM groups. However, this attenuation of expression was not observed for JAK-2 and STAT-3 in any of the groups at any time points after gene transfer (each P>0.05). The expression level of survivin in the TFPI group also weakened significantly over time compared with the levels in the Ad-LacZ and DMEM groups (each P<0.05) at the 3rd, 5th and 7th days after gene transfer. The results demonstrated that TFPI played an apoptosis-inducing role in VSMCs in a manner that involves both the suppression of JAK-2/STAT-3 pathway phosphorylation and the down-regulation of survivin. Our data show for the first time that targeting the JAK-2/STAT-3 pathway and survivin by overexpressing TFPI may be a new avenue for the treatment of restenosis.
    Cellular signalling 06/2012; 24(10):1909-17. · 4.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cardiotoxicity of cyclosporine A (CsA) limits its clinical application in extensive and long-term therapies. Our group has shown that CsA induces myocardium cell apoptosis in vivo and increases calcium-sensing receptor (CaSR) expression. However, its molecular mechanism remains unknown. The purpose of this study was to determine whether CaSR plays an essential role in CsA-induced apoptosis in H9c2 cells and to investigate the role of the mitogen-activated protein kinase (MAPK) signaling cascade in this process. H9c2 cells were treated with CsA in a dose-dependent manner, and decreased Bcl-2 expression, increased Bax expression, and caspase-3 activation were observed. In a time-dependent manner, CsA increased CaSR expression, activated the extracellularly regulated kinase (ERK) and p38 MAPK pathways, and inactivated the c-Jun N-terminal kinase (JNK) MAPK signaling pathway. When H9c2 cardiomyoblast cells pretreated with gadolinium chloride (GdCl(3)), a CaSR activator, were treated with CsA, decreased phosphorylation of ERK1/2, increased phosphorylation of p38, decreased Bcl-2 expression, increased Bax expression, and activated caspase-3 were observed. Cells pretreated with the CaSR inhibitor NPS2390 inhibited this process. Furthermore, the MEK1/2 inhibitor U0126 and the p38 MAPK inhibitor SB203580 markedly blocked the effect of CsA on cell apoptosis, apoptotic-related protein expression, and caspase-3 activation. These findings showed that CsA induced apoptosis in H9c2 cells in vitro, and CaSR mediated the degradation of ERK MAPK and the upregulation of the p38 MAPK pathway involved in CsA-induced H9c2 cardiomyoblast cell apoptosis.
    Molecular and Cellular Biochemistry 06/2012; 367(1-2):227-36. · 2.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we sought to determine whether the calcium-sensing receptor (CaSR) is involved in Cyclosporin A (CsA)-induced cardiomyocyte apoptosis and identify its signal transduction pathway. Forty Wistar rats were randomly divided into four groups: the control group, the CsA group (CsA 15 mg/kg/day intraperitoneally, i.p.), the GdCl3 group (GdCI3 10 mg/kg, every other day, i.p.), and the CsA + GdCl3 group (CsA 15 mg/kg/day, i.p. and GdCl3 10 mg/kg, every other day, i.p.). The groups were treated for two weeks. Cardiomyocyte apoptosis and injury were observed by light microscopy, electron microscopy and TUNEL staining. CaSR mRNA expression was determined by RT-PCR, and CaSR protein expression was detected by western blot and immunohistochemistry. The protein expression levels of cytochrome c, cleaved caspase-9, cleaved caspase-3, Bax, and Bcl-2 were detected by western blot and immunohistochemistry. CsA increased the expression of CaSR mRNA and protein and enhanced cardiomyocyte apoptosis. GdCl3, a specific activator of CaSR, further enhanced CaSR expression and cardiomyocyte apoptosis and led to the upregulation of cytochrome c, cleaved caspase-9, cleaved caspase-3, and Bax, as well as the downregulation of Bcl-2. The present in vivo study provides further information on CsA-induced cardiomyocyte apoptosis. We determined for the first time that CaSR is involved in CsA-induced cardiomyocyte apoptosis in the rat through the activation of downstream cytochrome c-caspase-3 pathways. Furthermore, we offer evidence that the Bcl-2 family is involved in this process. These findings could provide novel strategies for the prevention and cure of CsA-induced cardiotoxicity.
    Pharmazie 12/2011; 66(12):968-74. · 0.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to investigate whether Cyclosporin-A (CsA)-induced myocardial injury is mediated by elevating the intracellular calcium concentration ([Ca2+]i) through the Calcium sensing receptor (CaSR). Cultured neonatal rat cardiomyocytes were treated with CsA, with or without pretreatment with the CaSR-specific antagonist NPS2390 or the CaSR-specific agonist gadolinium chloride (GdCI3). At 2 h, 4 h, 6 h and 8 h after CsA treatment, the ultrastructural changes of the cardiomyocytes were observed. In addition, the lactate dehydrogenase (LDH) and creatine kinase (CK) release from the cardiomyocytes, the [Ca2+]i and the level of CaSR expression were determined. With increasing time of CsA treatment, ultrastructural damage of cardimyocytes gradually aggrevated, LDH and CK release and [Ca2+]i also gradually increased. CaSR mRNA and protein expression increased at 4 h after CsA treatment. Compared with CsA treatment alone, pretreatment with NPS2390 lessened the ultrastructural damage of the cardiomyocytes as well as decreased the LDH and CK release, [Ca2+]i and the expression of the CaSR mRNA and protein. Conversely, pretreatment with GdCI3 aggravated the ultrastructural damage of the cardiomyocytes as well as increased LDH and CK release, [Ca2+]i and the expression of the CaSR mRNA and protein. These results demonstrate that CsA induced cardiomyocyte injury in a time-dependent manner. Moreover, CsA-induced cardiomyocyte injury was related to CaSR-mediated intracellular calcium overload. These findings provide new insight into the mechanisms involved in CsA-induced myocardial injury.
    Pharmazie 01/2011; 66(1):52-7. · 0.96 Impact Factor