Ji-Dong Guo

Wisconsin National Primate Research Center, Madison, Wisconsin, United States

Are you Ji-Dong Guo?

Claim your profile

Publications (11)53.76 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: Striatal-enriched protein tyrosine phosphatase (STEP) is a brain-specific protein tyrosine phosphatase that opposes the development of synaptic strengthening and the consolidation of fear memories. In contrast, stress facilitates fear memory formation, potentially by activating corticotrophin releasing factor (CRF) neurons in the anterolateral cell group of the bed nucleus of the stria terminalis (BNSTALG). Here, using dual-immunofluorescence, single-cell reverse transcriptase polymerase chain reaction, quantitative reverse transcriptase polymerase chain reaction, Western blot, and whole-cell patch-clamp electrophysiology, we examined the expression and role of STEP in regulating synaptic plasticity in rat BNSTALG neurons and its modulation by stress. Striatal-enriched protein tyrosine phosphatase was selectively expressed in CRF neurons in the oval nucleus of the BNSTALG. Following repeated restraint stress (RRS), animals displayed a significant increase in anxiety-like behavior, which was associated with a downregulation of STEP messenger RNA and protein expression in the BNSTALG, as well as selectively enhancing the magnitude of long-term potentiation (LTP) induced in Type III, putative CRF neurons. To determine if the changes in STEP expression following RRS were mechanistically related to LTP facilitation, we examined the effects of intracellular application of STEP on the induction of LTP. STEP completely blocked the RRS-induced facilitation of LTP in BNSTALG neurons. Hence, STEP acts to buffer CRF neurons against excessive activation, while downregulation of STEP after chronic stress may result in pathologic activation of CRF neurons in the BNSTALG and contribute to prolonged states of anxiety. Thus, targeted manipulations of STEP activity might represent a novel treatment strategy for stress-induced anxiety disorders.
    Biological psychiatry 09/2013; · 8.93 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Regulation of BNSTALG neuronal firing activity is tightly regulated by the opposing actions of the fast outward potassium current, IA , mediated by α subunits of the Kv4 family of ion channels, and the transient inward calcium current, IT . Together these channels play a critical role in regulating the latency to action potential onset, duration and frequency, as well as dendritic back-propagation and synaptic plasticity. Previously we have shown that Type I - III BNSTALG neurons express mRNA transcripts for each of the Kv4 α subunits. However, the biophysical properties of native IA channels are critically dependent on the formation of macromolecular complexes of Kv4 channels with a family of chaperone proteins, the potassium channel interacting proteins (KChIP1 - 4). Here, we used a multidisciplinary approach to investigate the expression and function of Kv4 channels and KChIPs in neurons of the rat BNSTALG . Using immunofluorescence we demonstrated the pattern of localization of Kv4.2, Kv4.3, and KChIP1-4 proteins in the BNSTALG . Moreover, our scRT-PCR studies revealed that mRNA transcripts for Kv4.2, Kv4.3, and all four KChIPs were differentially expressed in Type I - III BNSTALG neurons. Furthermore, immunoelectron microscopy revealed that Kv4.2 and Kv4.3 channels were primarily localized to the dendrites and spines of BNSTALG neurons, and are thus ideally situated to modulate synaptic transmission. Consistent with this observation, in vitro patch clamp recordings showed that reducing postsynaptic IA in these neurons lowered the threshold for LTP induction. These results are discussed in relation to potential modulation of IA channels by chronic stress. J. Comp. Neurol., 2013. © 2013 Wiley Periodicals, Inc.
    The Journal of Comparative Neurology 08/2013; · 3.66 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Many psychiatric disorders, including anxiety and autism spectrum disorders, have early ages of onset and high incidence in juveniles. To better treat and prevent these disorders, it is important to first understand normal development of brain circuits that process emotion. Healthy and maladaptive emotional processing involve the basolateral amygdala (BLA), dysfunction of which has been implicated in numerous psychiatric disorders. Normal function of the adult BLA relies on a fine balance of glutamatergic excitation and GABAergic inhibition. Elsewhere in the brain, GABAergic transmission changes throughout development, but little is known about the maturation of GABAergic transmission in the BLA. Here we used whole-cell patch clamp recording and single-cell RT-PCR to study GABAergic transmission in rat BLA principal neurons at postnatal days (P)7, 14, 21, 28, and 35. GABAA currents exhibited a significant, two-fold reduction in rise-time and nearly 25% reduction in decay time-constant between P7 and P28. This corresponded with a shift in expression of GABAA receptor subunit mRNA from the α2 to the α1 subunit. The reversal potential for GABAA receptors transitioned from depolarizing to hyperpolarizing with age, from around -55mV at P7 to -70mV by P21. There was a corresponding shift in expression of opposing chloride pumps that influence the reversal, from NKCC1 to KCC2. Finally, we observed short-term depression of GABAA postsynaptic currents in immature neurons that was significantly and gradually abolished by P28. These findings reveal that, in the developing BLA, GABAergic transmission is highly dynamic, reaching maturity at the end of the first postnatal month.
    Journal of Neurophysiology 05/2013; · 3.30 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Corticotrophin-releasing factor (CRF) plays a key role in initiating many of the endocrine, autonomic, and behavioral responses to stress. CRF-containing neurons of the paraventricular nucleus of the hypothalamus (PVN) are classically involved in regulating endocrine function through activation of the stress axis. However, CRF is also thought to play a critical role in mediating anxiety-like responses to environmental stressors, and dysfunction of the CRF system in extra-hypothalamic brain regions, like the bed nucleus of stria terminalis (BNST), has been linked to the etiology of many psychiatric disorders including anxiety and depression. Thus, although CRF neurons of the PVN and BNST share a common neuropeptide phenotype, they may represent two functionally diverse neuronal populations. Here, we employed dual-immunofluorescence, single-cell RT-PCR, and electrophysiological techniques to further examine this question and report that CRF neurons of the PVN and BNST are fundamentally different such that PVN CRF neurons are glutamatergic, whereas BNST CRF neurons are GABAergic. Moreover, these two neuronal populations can be further distinguished based on their electrophysiological properties, their co-expression of peptide neurotransmitters such as oxytocin and arginine-vasopressin, and their cognate receptors. Our results suggest that CRF neurons in the PVN and the BNST would not only differ in their response to local neurotransmitter release, but also in their action on downstream target structures.
    Frontiers in Neuroscience 01/2013; 7:156.
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Corticotropin-releasing factor (CRF) is critical for the endocrine, autonomic, and behavioral responses to stressors, and it has been shown to modulate fear and anxiety. The CRF receptor is widely expressed across a variety of cell types, impeding progress toward understanding the contribution of specific CRF-containing neurons to fear dysregulation. We used a unique CRF-Cre driver transgenic mouse line to remove floxed GABA(A)α1 subunits specifically from CRF neurons [CRF-GABA(A)α1 KO]. This process resulted in mice with decreased GABA(A)α1 expression only in CRF neurons and increased CRF mRNA within the amygdala, bed nucleus of the stria terminalis (BNST) and paraventricular nucleus of the hypothalamus. These mice show normal locomotor and pain responses and no difference in depressive-like behavior or Pavlovian fear conditioning. However, CRF-GABA(A)α1 KO increased anxiety-like behavior and impaired extinction of conditioned fear, coincident with an increase in plasma corticosterone concentration. These behavioral impairments were rescued with systemic or BNST infusion of the CRF antagonist R121919. Infusion of Zolpidem, a GABA(A)α1-preferring benzodiazepine-site agonist, into the BNST of the CRF-GABA(A)α1 KO was ineffective at decreasing anxiety. Electrophysiological findings suggest a disruption in inhibitory current may play a role in these changes. These data indicate that disturbance of CRF containing GABA(A)α1 neurons causes increased anxiety and impaired fear extinction, both of which are symptoms diagnostic for anxiety disorders, such as posttraumatic stress disorder.
    Proceedings of the National Academy of Sciences 09/2012; 109(40):16330-5. · 9.74 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The anterolateral cell group of the bed nucleus of the stria terminalis (BNST(ALG)) serves as an important relay station in stress circuitry. Limbic inputs to the BNST(ALG) are primarily glutamatergic and activity-dependent changes in this input have been implicated in abnormal behaviors associated with chronic stress and addiction. Significantly, local infusion of acetylcholine (ACh) receptor agonists into the BNST trigger stress-like cardiovascular responses, however, little is known about the effects of these agents on glutamatergic transmission in the BNST(ALG). Here, we show that glutamate- and ACh-containing fibers are found in close association in the BNST(ALG). Moreover, in the presence of the acetylcholinesterase inhibitor, eserine, endogenous ACh release evoked a long-lasting reduction of the amplitude of stimulus-evoked EPSCs. This effect was mimicked by exogenous application of the ACh analog, carbachol, which caused a reversible, dose-dependent, reduction of the evoked EPSC amplitude, and an increase in both the paired-pulse ratio and coefficient of variation, suggesting a presynaptic site of action. Uncoupling of postsynaptic G-proteins with intracellular GDP-β-S, or application of the nicotinic receptor antagonist, tubocurarine, failed to block the carbachol effect. In contrast, the carbachol effect was blocked by prior application of atropine or M(2) receptor-preferring antagonists, and was absent in M(2)/M(4) receptor knockout mice, suggesting that presynaptic M(2) receptors mediate the effect of ACh. Immunoelectron microscopy studies further revealed the presence of M(2) receptors on axon terminals that formed asymmetric synapses with BNST neurons. Our findings suggest that presynaptic M(2) receptors might be an important modulator of the stress circuit and hence a novel target for drug development.
    Neuropharmacology 12/2011; 62(4):1671-83. · 4.11 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Activation of corticotrophin releasing factor (CRF) neurons in the paraventricular nucleus of the hypothalamus (PVN) is necessary for establishing the classic endocrine response to stress, while activation of forebrain CRF neurons mediates affective components of the stress response. Previous studies have reported that mRNA for CRF2 receptor (CRFR2) is expressed in the bed nucleus of the stria terminalis (BNST) as well as hypothalamic nuclei, but little is known about the localization and cellular distribution of CRFR2 in these regions. Using immunofluorescence with confocal microscopy, as well as electron microscopy, we demonstrate that in the BNST CRFR2-immunoreactive fibers represent moderate to strong labeling on axons terminals. Dual-immunofluorescence demonstrated that CRFR2-fibers co-localize oxytocin (OT), but not arginine-vasopressin (AVP), and make perisomatic contacts with CRF neurons. Dual-immunofluorescence and single cell RT-PCR demonstrate that in the hypothalamus, CRFR2 immunoreactivity and mRNA are found in OT, but not in CRF or AVP-neurons. Furthermore, CRF neurons of the PVN and BNST express mRNA for the oxytocin receptor, while the majority of OT/CRFR2 neurons in the hypothalamus do not. Finally, using adenoviral-based anterograde tracing of PVN neurons, we show that OT/CRFR2-immunoreactive fibers observed in the BNST originate in the PVN. Our results strongly suggest that CRFR2 located on oxytocinergic neurons and axon terminals might regulate the release of this neuropeptide and hence might be a crucial part of potential feedback loop between the hypothalamic oxytocin system and the forebrain CRF system that could significantly impact affective and social behaviors, in particular during times of stress.
    Psychoneuroendocrinology 04/2011; 36(9):1312-26. · 5.14 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The activity of neurons in the anterolateral cell group of the bed nucleus of the stria terminalis (BNST(ALG)) plays a critical role in anxiety- and stress-related behaviors. Histochemical studies have suggested that multiple distinct neuronal phenotypes exist in the BNST(ALG). Consistent with this observation, the physiological properties of BNST(ALG) neurons are also heterogeneous, and three distinct cell types can be defined (Types I-III) based primarily on their expression of four key membrane currents, namely I(h), I(A), I(T), and I(K(IR)). Significantly, all four channels are multimeric proteins and can comprise of more than one pore-forming α subunit. Hence, differential expression of α subunits may further diversify the neuronal population. However, nothing is known about the relative expression of these ion channel α subunits in BNST(ALG) neurons. We have addressed this lacuna by combining whole-cell patch-clamp recording together with single-cell reverse transcriptase polymerase chain reaction (scRT-PCR) to assess the mRNA transcript expression for each of the subunits for the four key ion channels in Type I-III neurons of the BNST(ALG.) Here, cytosolic mRNA from single neurons was probed for the expression of transcripts for each of the α subunits of I(h) (HCN1-HCN4), I(T) (Ca(v)3.1-Ca(v)3.3), I(A) (K(v)1.4, K(v)3.4, K(v)4.1-K(v) 4.3) and I(K(IR)) (Kir2.1-Kir2.4). An unbiased hierarchical cluster analysis followed by discriminant function analysis revealed that a positive correlation exists between the physiological and genetic phenotype of BNST(ALG) neurons. Thus, the analysis segregated BNST(ALG) neurons into 3 distinct groups, based on their α subunit mRNA expression profile, which positively correlated with our existing electrophysiological classification (Types I-III). Furthermore, analysis of mRNA transcript expression in Type I-Type III neurons suggested that, whereas Type I and III neurons appear to represent genetically homologous cell populations, Type II neurons may be further subdivided into three genetically distinct subgroups. These data not only validate our original classification scheme, but further refine the classification at the molecular level, and thus identifies novel targets for potential disruption and/or pharmacotherapeutic intervention in stress-related anxiety-like behaviors.
    Molecular and Cellular Neuroscience 02/2011; 46(4):699-709. · 3.84 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Dopamine, acting at the D1 family receptors (D1R) is critical for the functioning of the amygdala, including fear conditioning and cue-induced reinstatement of drug self administration. However, little is known about the different contributions of the two D1R subtypes, D(1) and D(5). We identified D(1)-immunoreactive patches in the primate that appear similar to the intercalated cell masses reported in the rodent; however, both receptors were present across the subdivisions of the primate amygdala including the basolateral amygdala (BLA). Using immunoelectron microscopy, we established that both receptors have widespread distributions in BLA. The D1R subtypes colocalize in dendritic spines and terminals, with D(1) predominant in spines and D(5) in terminals. Single-cell RT-PCR confirmed that individual BLA projection neurons express both D(1) and D(5) mRNA. The responses of primate BLA neurons to dopamine and D1R drugs were studied using in vitro slices. We found that responses were similar to those previously reported in rat BLA neurons and included a mixture of postsynaptic and presynaptic actions. We investigated the distribution of D1R in the rat BLA and found that there were similarities between the species, such as more prominent D(5) localization to presynaptic structures. The higher affinity of D(5) for dopamine suggests that presynaptic actions may predominate in the BLA at low levels of dopamine, while postsynaptic effects increase and dominate as dopaminergic drive increases. The results presented here suggest a complex action of dopamine on BLA circuitry that may evolve with different degrees of dopaminergic stimulation.
    Brain Structure and Function 09/2009; 213(4-5):375-93. · 7.84 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Substantial evidence has suggested that the activity of the bed nucleus of the stria terminalis (BNST) mediates many forms of anxiety-like behavior in human and non-human animals. These data have led many investigators to suggest that abnormal processing within this nucleus may underlie anxiety disorders in humans, and effective anxiety treatments may restore normal BNST functioning. Currently some of the most effective treatments for anxiety disorders are drugs that modulate serotonin (5-HT) systems, and several decades of research have suggested that the activation of 5-HT can modulate anxiety-like behavior. Despite these facts, relatively few studies have examined how activity within the BNST is modulated by 5-HT. Here we review our own investigations using in vitro whole-cell patch-clamp electrophysiological methods on brain sections containing the BNST to determine the response of BNST neurons to exogenous 5-HT application. Our data suggest that the response of BNST neurons to 5-HT is complex, displaying both inhibitory and excitatory components, which are mediated by 5-HT(1A), 5-HT(2A), 5-HT(2C) and 5-HT(7) receptors. Moreover, we have shown that the selective activation of the inhibitory response to 5-HT reduces anxiety-like behavior, and we describe data suggesting that the activation of the excitatory response to 5-HT may be anxiogenic. We propose that in the normal state, the function of 5-HT is to dampen activity within the BNST (and consequent anxiety-like behavior) during exposure to threatening stimuli; however, we suggest that changes in the balance of the function of BNST 5-HT receptor subtypes could alter the response of BNST neurons to favor excitation and produce a pathological state of increased anxiety.
    Progress in Neuro-Psychopharmacology and Biological Psychiatry 06/2009; 33(8):1309-20. · 3.55 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Activation of group II metabotropic glutamate receptors (mGluR2/3) in the amygdala plays a critical role in the regulation of fear and anxiety states. Previous studies using nonselective agonists have suggested this action can result from activation of either pre- or postsynaptic mGluR2/3. Here, we have used a combination of whole-cell patch clamp recording with highly selective agonists (LY354740 and LY379268) and immunoelectron microscopy to examine structure-function relationships for mGluR2/3 in the basolateral amygdala (BLA) and bed nucleus of the stria terminalis (BNST). Stimulation of mGluR2/3 evoked a direct, TTX-insensitive membrane hyperpolarization in all BLA projection neurons tested, but only about half of BNST neurons. The membrane hyperpolarization was mediated by activation of an outward potassium current or blockade of a tonically active inward I(h) current in different groups of BLA neurons. In both regions, mGluR2/3 caused a long-lasting reduction of glutamate release from presynaptic afferent terminals even at concentrations that failed to elicit a direct postsynaptic response. The localization of mGluR2/3 differed regionally, with postsynaptic labeling significantly more common in BLA than BNST, corresponding to the strength of postsynaptic responses recorded there. Our results demonstrate a complex role for mGluR2/3 receptors in modulating anxiety circuitry, including direct inhibition and reduction of excitatory drive. The combination of direct inhibition of projection neurons within the BLA and suppression of excitatory neurotransmission in the BNST may be responsible for the anxiolytic actions of group II mGluR agonists.
    The Journal of Comparative Neurology 01/2008; 505(6):682-700. · 3.66 Impact Factor

Publication Stats

101 Citations
99 Downloads
648 Views
53.76 Total Impact Points

Institutions

  • 2013
    • Wisconsin National Primate Research Center
      Madison, Wisconsin, United States
  • 2008–2013
    • Emory University
      • • Department of Psychiatry and Behavioral Sciences
      • • Atlanta Veterans Affairs Medical Center
      Atlanta, GA, United States
  • 2009
    • University of Vermont
      • Department of Psychology
      Burlington, VT, United States