Jeremy Grant

University of Maine, Orono, Minnesota, United States

Are you Jeremy Grant?

Claim your profile

Publications (2)2.69 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Specific nuclear domains are nonrandomly positioned within the nuclear space, and this preferential positioning has been shown to play an important role in genome activity and stability. Well-known examples include the organization of repetitive DNA in telomere clusters or in the chromocenter of Drosophila and mammalian cells, which may provide a means to control the availability of general repressors, such as the heterochromatin protein 1 (HP1). We have specifically characterized the intranuclear positioning of in vivo fluorescence of the Caenorhabditis elegans HP1 homologue HPL-2 as a marker for heterochromatin domains in developing embryos. For this purpose, the wavelet transform modulus maxima (WTMM) segmentation method was generalized and adapted to segment the small embryonic cell nuclei in three dimensions. The implementation of a radial distribution algorithm revealed a preferential perinuclear positioning of HPL-2 fluorescence in wild-type embryos compared with the diffuse and homogeneous nuclear fluorescence observed in the lin-13 mutants. For all other genotypes analyzed, the quantitative analysis highlighted various degrees of preferential HPL-2 positioning at the nuclear periphery, which directly correlates with the number of HPL-2 foci previously counted on 2D projections. Using a probabilistic 3D cell nuclear model, we found that any two nuclei having the same number of foci, but with a different 3D probabilistic positioning scheme, can have significantly different counts in the 2D maximum projection, thus showing the deceptive limitations of using techniques of 2D maximum projection foci counts. By this approach, a strong perinuclear positioning of HPL-2 foci was brought into light upon inactivation of conserved chromatin-associated proteins, including the HAT cofactor TRAPP.
    Chromosome Research 12/2010; 18(8):873-85. DOI:10.1007/s10577-010-9175-2 · 2.69 Impact Factor
  • Source
    Jeremy Grant