Jennifer Stamos

Genentech, San Francisco, California, United States

Are you Jennifer Stamos?

Claim your profile

Publications (10)71.76 Total impact

  • Structure 06/2005; · 5.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepatocyte growth factor activator (HGFA) is a serine protease that converts hepatocyte growth factor (HGF) into its active form. When activated HGF binds its cognate receptor Met, cellular signals lead to cell growth, differentiation, and migration, activities which promote tissue regeneration in liver, kidney and skin. Intervention in the conversion of HGF to its active form has the potential to provide therapeutic benefit where HGF/Met activity is associated with tumorigenesis. To help identify ways to moderate HGF/Met effects, we have determined the molecular structure of the protease domain of HGFA. The structure we determined, at 2.7 A resolution, with no pseudo-substrate or inhibitor bound is characterized by an unconventional conformation of key residues in the enzyme active site. In order to find whether this apparently non-enzymatically competent arrangement would persist in the presence of a strongly-interacting inhibitor, we also have determined, at 2.6 A resolution, the X-ray structure of HGFA complexed with the first Kunitz domain (KD1) from the physiological inhibitor hepatocyte growth factor activator inhibitor 1B (HAI-1B). In this complex we observe a rearranged substrate binding cleft that closely mirrors the cleft of other serine proteases, suggesting an extreme conformational dynamism. We also characterize the inhibition of 16 serine proteases by KD1, finding that the previously reported enzyme specificity of the intact extracellular region of HAI-1B resides in KD1 alone. We find that HGFA, matriptase, hepsin, plasma kallikrein and trypsin are potently inhibited, and use the complex structure to rationalize the structural basis of these results.
    Journal of Molecular Biology 04/2005; 346(5):1335-49. · 3.91 Impact Factor
  • C. Wiesmann, J. Stamos
    Acta Crystallographica Section A - ACTA CRYSTALLOGR A. 01/2005; 61.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepatocyte growth factor (HGF) binds the extracellular domain and activates the Met receptor to induce mitogenesis, morphogenesis, and motility. The extracellular domain of Met is comprised of Sema, PSI, and four IPT subdomains. We investigated the contribution of these subdomains to Met receptor dimerization. Our observations indicate that the Sema domain is necessary for dimerization in addition to HGF binding. Treatment of Met-overexpressing tumor cells with recombinant Sema in the presence or absence of HGF results in decreased Met-mediated signal transduction, cell motility, and migration, behaving in a manner similar to an antagonistic anti-Met Fab. These data suggest that the Sema domain of Met may not only represent a novel anticancer therapeutic target but also acts as a biotherapeutic itself.
    Cancer Cell 08/2004; 6(1):75-84. · 24.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two structurally distinct classes of peptides were recently identified by phage display that bind the high-affinity IgE receptor, FcepsilonRI, and block IgE binding and subsequent receptor activation. Both classes adopt highly stable structures in solution, one forming a beta hairpin, with the other forming a helical "zeta" structure. Despite these differences, the two classes bind competitively to the same site on the receptor. Structural analyses of both peptide-receptor complexes by NMR spectroscopy and/or X-ray crystallography reveal that the unrelated peptide scaffolds have nevertheless converged to present a similar three-dimensional surface to interact with FcepsilonRI and that their modes of interaction share a key feature of the IgE-FcepsilonRI complex, the proline/tryptophan sandwich.
    Structure 08/2004; 12(7):1289-301. · 5.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Met tyrosine kinase receptor and its ligand, hepatocyte growth factor (HGF), play important roles in normal development and in tumor growth and metastasis. HGF-dependent signaling requires proteolysis from an inactive single-chain precursor into an active alpha/beta-heterodimer. We show that the serine protease-like HGF beta-chain alone binds Met, and report its crystal structure in complex with the Sema and PSI domain of the Met receptor. The Met Sema domain folds into a seven-bladed beta-propeller, where the bottom face of blades 2 and 3 binds to the HGF beta-chain 'active site region'. Mutation of HGF residues in the area that constitutes the active site region in related serine proteases significantly impairs HGF beta binding to Met. Key binding loops in this interface undergo conformational rearrangements upon maturation and explain the necessity of proteolytic cleavage for proper HGF signaling. A crystallographic dimer interface between two HGF beta-chains brings two HGF beta:Met complexes together, suggesting a possible mechanism of Met receptor dimerization and activation by HGF.
    The EMBO Journal 07/2004; 23(12):2325-35. · 9.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepatocyte growth factor activator inhibitor-1 (HAI-1) is an integral membrane protein expressed on epithelial cells and contains two extracellular Kunitz domains (N-terminal KD1 and C-terminal KD2) known to inhibit trypsin-like serine proteases. In tumorigenesis and tissue regeneration, HAI-1 regulates the hepatocyte growth factor (HGF)/c-Met pathway by inhibiting the activity of HGF activator (HGFA) and matriptase, two serine proteases that convert pro-HGF into its biologically active form. By screening a placental cDNA library, we discovered a new splice variant of HAI-1 designated HAI-1B that contains an extra 16 amino acids adjacent to the C terminus of KD1. To investigate possible consequences on Kunitz domain function, a soluble form of HAI-1B (sHAI-1B) comprising the entire extracellular domain was produced. First, we found that sHAI-1B displayed remarkable enzyme specificity by potently inhibiting only HGFA (IC50 = 30.5 nm), matriptase (IC50 = 16.5 nm), and trypsin (IC50 = 2.4 nm) among 16 serine proteases examined, including plasminogen activators (urokinase- and tissue-type plasminogen activators), coagulation enzymes thrombin, factors VIIa, Xa, XIa, and XIIa, and activated protein C. Relatively weak inhibition was found for plasmin (IC50 = 399 nm) and plasma kallikrein (IC50 = 686 nm). Second, the functions of the KD1 and KD2 domains in sHAI-1B were investigated using P1 residue-directed mutagenesis to show that inhibition of HGFA, matriptase, trypsin, and plasmin was due to KD1 and not KD2. Furthermore, analysis by reverse transcription-PCR demonstrated that HAI-1B and HAI-1 were co-expressed in normal tissues and various epithelial-derived cancer cell lines. Both isoforms were up-regulated in eight examined ovarian carcinoma specimens, three of which had higher levels of HAI-1B RNA than of HAI-1 RNA. Therefore, previously demonstrated roles of HAI-1 in various physiological and pathological processes likely involve both HAI-1B and HAI-1.
    Journal of Biological Chemistry 10/2003; 278(38):36341-9. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The crystal structure of the kinase domain from the epidermal growth factor receptor (EGFRK) including forty amino acids from the carboxyl-terminal tail has been determined to 2.6-A resolution, both with and without an EGFRK-specific inhibitor currently in Phase III clinical trials as an anti-cancer agent, erlotinib (OSI-774, CP-358,774, Tarceva(TM)). The EGFR family members are distinguished from all other known receptor tyrosine kinases in possessing constitutive kinase activity without a phosphorylation event within their kinase domains. Despite its lack of phosphorylation, we find that the EGFRK activation loop adopts a conformation similar to that of the phosphorylated active form of the kinase domain from the insulin receptor. Surprisingly, key residues of a putative dimerization motif lying between the EGFRK domain and carboxyl-terminal substrate docking sites are found in close contact with the kinase domain. Significant intermolecular contacts involving the carboxyl-terminal tail are discussed with respect to receptor oligomerization.
    Journal of Biological Chemistry 12/2002; 277(48):46265-72. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Coagulation factor VIIa (FVIIa) contains a Trypsin-like serine protease domain and initiates the cascade of proteolytic events leading to Thrombin activation and blood clot formation. Vascular injury allows formation of the complex between circulating FVIIa and its cell surface bound obligate cofactor, Tissue Factor (TF). Circulating FVIIa is nominally activated but retains zymogen-like character and requires TF in order to complete the zymogen-to-enzyme transition. The manner in which TF exerts this effect is unclear. The structure of TF/FVIIa is known. Knowledge of the zymogen structure is helpful for understanding the activation transition in this system. The 2 A resolution crystal structure of a zymogen form of FVII comprising the EGF2 and protease domains is revealed in a complex with the exosite binding inhibitory peptide A-183 and a vacant active site. The activation domain, which includes the N terminus, differs in ways beyond those that are expected for zymogens in the Trypsin family. There are large differences in the TF binding region. An unprecedented 3 residue shift in registration between beta strands B2 and A2 in the C-terminal beta barrel and hydrogen bonds involving Glu154 provide new insight into conformational changes accompanying zymogen activation, TF binding, and enzymatic competence. TF-mediated allosteric control of the activity of FVIIa can be rationalized. The reregistering beta strand connects the TF binding region and the N-terminal region. The zymogen registration allows H bonds that prevent the N terminus from attaining a key salt bridge with the active site. TF binding may influence an equilibrium by selecting the enzymatically competent registration.
    Structure 08/2001; 9(7):627-36. · 5.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Coagulation factor VIIa (FVIIa) contains a Trypsin-like serine protease domain and initiates the cascade of proteolytic events leading to Thrombin activation and blood clot formation. Vascular injury allows formation of the complex between circulating FVIIa and its cell surface bound obligate cofactor, Tissue Factor (TF). Circulating FVIIa is nominally activated but retains zymogen-like character and requires TF in order to complete the zymogen-to-enzyme transition. The manner in which TF exerts this effect is unclear. The structure of TF/FVIIa is known. Knowledge of the zymogen structure is helpful for understanding the activation transition in this system.Results: The 2 Å resolution crystal structure of a zymogen form of FVII comprising the EGF2 and protease domains is revealed in a complex with the exosite binding inhibitory peptide A-183 and a vacant active site. The activation domain, which includes the N terminus, differs in ways beyond those that are expected for zymogens in the Trypsin family. There are large differences in the TF binding region. An unprecedented 3 residue shift in registration between β strands B2 and A2 in the C-terminal β barrel and hydrogen bonds involving Glu154 provide new insight into conformational changes accompanying zymogen activation, TF binding, and enzymatic competence.Conclusions: TF-mediated allosteric control of the activity of FVIIa can be rationalized. The reregistering β strand connects the TF binding region and the N-terminal region. The zymogen registration allows H bonds that prevent the N terminus from attaining a key salt bridge with the active site. TF binding may influence an equilibrium by selecting the enzymatically competent registration.
    Structure 01/2001; 9(7):627-636. · 5.99 Impact Factor