H. Böhringer

Max Planck Institute for Extraterrestrial Physics, Arching, Bavaria, Germany

Are you H. Böhringer?

Claim your profile

Publications (483)1316.49 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the analysis of the Chandra observation of XDCP J0044.0-2033, a massive, distant (z=1.579) galaxy cluster discovered in the XDCP survey. The total exposure time of 380 ks with Chandra ACIS-S provides the deepest X-ray observation currently achieved on a massive, high redshift cluster. Extended emission from the Intra Cluster Medium (ICM) is detected at a very high significance level (S/N~20) on a circular region with a 44" radius, corresponding to $R_{ext}=375$ kpc at the cluster redshift. We perform an X-ray spectral fit of the ICM emission modeling the spectrum with a single-temperature thermal mekal model. Our analysis provides a global temperature $kT=6.7^{+1.3}_{-0.9}$ keV, and a iron abundance $Z_{Fe} = 0.41_{-0.26}^{+0.29}Z_{Fe_\odot}$ (error bars correspond to 1 $\sigma$). We fit the background-subtracted surface brightness profile with a single $\beta$-model out to 44", finding a rather flat profile with no hints of a cool core. We derive the deprojected electron density profile and compute the ICM mass within the extraction radius $R_{ext}=375$ kpc to be $M_{ICM}(r<R_{ext}) = (1.48 \pm 0.20) \times 10^{13} M_\odot$. Under the assumption of hydrostatic equilibrium and assuming isothermality within $R_{ext}$, the total mass is $M_{2500}= 1.23_{-0.27}^{+0.46} \times 10 ^{14} M_\odot$ for $R_{2500} = 240_{-20}^{+30}$ kpc. Extrapolating the profile at radii larger than the extraction radius $R_{ext}$ we find $M_{500} = 3.2_{-0.6}^{+0.9} \times 10 ^{14}M_\odot$ for $R_{500} = 562_{-37}^{+50}$ kpc. This analysis establishes the existence of virialized, massive galaxy clusters at redshift $z\sim 1.6$, paving the way to the investigation of the progenitors of the most massive clusters today. Given its mass and the XDCP survey volume, XDCP J0044.0-2033 does not create significant tension with the WMAP-7 $\Lambda$CDM cosmology.
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ESA's Planck satellite, dedicated to studying the early Universe and its subsequent evolution, was launched 14 May 2009 and has been scanning the microwave and submillimetre sky continuously since 12 August 2009. This paper gives an overview of the mission and its performance, the processing, analysis, and characteristics of the data, the scientific results, and the science data products and papers in the release. The science products include maps of the CMB and diffuse extragalactic foregrounds, a catalogue of compact Galactic and extragalactic sources, and a list of sources detected through the SZ effect. The likelihood code used to assess cosmological models against the Planck data and a lensing likelihood are described. Scientific results include robust support for the standard six-parameter LCDM model of cosmology and improved measurements of its parameters, including a highly significant deviation from scale invariance of the primordial power spectrum. The Planck values for these parameters and others derived from them are significantly different from those previously determined. Several large-scale anomalies in the temperature distribution of the CMB, first detected by WMAP, are confirmed with higher confidence. Planck sets new limits on the number and mass of neutrinos, and has measured gravitational lensing of CMB anisotropies at greater than 25 sigma. Planck finds no evidence for non-Gaussianity in the CMB. Planck's results agree well with results from the measurements of baryon acoustic oscillations. Planck finds a lower Hubble constant than found in some more local measures. Some tension is also present between the amplitude of matter fluctuations derived from CMB data and that derived from SZ data. The Planck and WMAP power spectra are offset from each other by an average level of about 2% around the first acoustic peak.
    Astronomy and Astrophysics 11/2014; 571(A1):1. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several claims have been made that we are located in a locally underdense region of the Universe based on observations of supernovae and galaxy density distributions. Two recent studies of K-band galaxy surveys have provided new support for a local underdensity in the galaxy distribution out to distances of 200 - 300 Mpc. If confirmed, such large local underdensities would have important implications on the interpretation of local measurements of cosmological parameters. Galaxy clusters have been shown to be ideal probes to trace the large-scale structure of the Universe. In this paper we study the local density distribution in the southern sky with the X-ray detected galaxy clusters from the REFLEX II cluster survey. From the normalized comoving number density of clusters we find an average underdensity of ~30 - 40% in the redshift range out to z ~0.04 (~170 Mpc) in the southern extragalactic sky with a significance larger than 3.4sigma. On larger scales from 300 Mpc to over 1 Gpc the density distribution appears remarkably homogeneous. The local underdensity seems to be dominated by the South Galactic Cap region. A comparison of the cluster distribution with that of galaxies in the K-band from a recent study shows that galaxies and clusters trace each other very closely in density. In the South Galactic Cap region both surveys find a local underdensity in the redshift range z= 0 to 0.05 and no significant underdensity in the North Galactic Cap at southern latitudes. Our results to not support cosmological models that attempt to interpret the cosmic acceleration by a large local void, since the local underdensity we find is not isotropic and limited to a size significantly smaller than 300 Mpc radius.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the results of approximately three years of observations of Planck Sunyaev-Zeldovich (SZ) sources with the Russian-Turkish 1.5-m telescope (RTT150), as a part of the optical follow-up programme undertaken by the Planck collaboration. During this time period approximately 20% of all dark and grey clear time available at the telescope was devoted to observations of Planck objects. Some observations of distant clusters were also done at the 6-m Bolshoy Telescope Azimutal'ny (BTA) of the Special Astrophysical Observatory of the Russian Academy of Sciences. In total, deep, direct images of more than one hundred fields were obtained in multiple filters. We identified 47 previously unknown galaxy clusters, 41 of which are included in the Planck catalogue of SZ sources. The redshifts of 65 Planck clusters were measured spectroscopically and 14 more were measured photometrically. We discuss the details of cluster optical identifications and redshift measurements. We also present new spectroscopic redhifts for 39 Planck clusters that were not included in the Planck SZ source catalogue and are published here for the first time.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Superclusters are the largest, observed matter density structures in the Universe. Recently Chon et al.(2013) presented the first supercluster catalogue constructed with a well-defined selection function based on the X-ray flux-limited cluster survey, REFLEX II. For the construction of the sample we proposed a concept to find the large objects with a minimum overdensity such that most of their mass will collapse in the future. The main goal of the paper is to provide support for our concept using simulations that we can, on the basis of our observational sample of X-ray clusters, construct a supercluster sample defined by a certain minimum overdensity, and to test how superclusters trace the underlying dark matter distribution. Our results confirm that an overdensity in the number of clusters is tightly correlated with an overdensity of the dark matter distribution. This enables us to define superclusters such that most of the mass will collapse in the future and to get first-order mass estimates of superclusters on the basis of the properties of the member clusters. We also show that in this context the ratio of the cluster number density and dark matter mass density is consistent with the theoretically expected cluster bias. Our previous work provided evidence that superclusters are a special environment for density structures of the dark matter to grow differently from the field as characterised by the X-ray luminosity function. Here we confirm for the first time that this originates from a top-heavy mass function at high statistical significance provided by a Kolmogorov-Smirnov test. We also find in close agreement with observations that the superclusters occupy only a small volume of few percent while they contain more than half of the clusters in the present day Universe.
    Astronomy and Astrophysics 06/2014; 567. · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present observations and analysis of a sample of 123 galaxy clusters from the 2013 Planck catalogue of Sunyaev-Zel'dovich sources with the Arcminute Microkelvin Imager (AMI), a ground-based radio interferometer. AMI provides an independent measurement with higher angular resolution, 3 arcmin compared to the Planck beams of 5-10 arcmin. The AMI observations thus provide validation of the cluster detections, improved positional estimates, and a consistency check on the fitted 'size' ($\theta_{s}$) and 'flux' ($Y_{\rm tot}$) parameters in the Generalised Navarro, Frenk and White (GNFW) model. We detect 99 of the clusters. We use the AMI positional estimates to check the positional estimates and error-bars produced by the Planck algorithms PowellSnakes and MMF3. We find that $Y_{\rm tot}$ values as measured by AMI are biased downwards with respect to the Planck constraints, especially for high Planck-SNR clusters. We perform simulations to show that this can be explained by deviation from the 'universal' pressure profile shape used to model the clusters. We show that AMI data can constrain the $\alpha$ and $\beta$ parameters describing the shape of the profile in the GNFW model provided careful attention is paid to the degeneracies between parameters, but one requires information on a wider range of angular scales than are present in AMI data alone to correctly constrain all parameters simultaneously.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In a previous paper we investigated the energy transfer of massive stars to the interstellar medium as a function of time and the geometrical configuration of three massive stars via 3D-mesh-refining hydrodynamics simulations, following the complete evolution of the massive stars and their supernovae except non-thermal processes . We analysed our ISM simulation results with the help of spectra for plasma temperatures between 0.1 and 10 keV and computed the spectral evolution and the spatio-temporal distribution of the hot gas. Results. Despite significant input of high temperature gas from supernovae and fast stellar winds, the resulting thermal X-ray spectra are generally very soft, with most of the emission well below 1 keV. We show that this is due to mixing triggered by resolved hydrodynamic instabilities. Supernovae enhance the X-ray luminosity of a superbubble by 1-2 orders of magnitude for a time span of about 0.1 Myr; longer if a supernova occurs in a larger superbubble and shorter in higher energy bands. Peak superbubble luminosities of the order of 10^{36} erg/s are reproduced well. The strong decay of the X-ray luminosity is due to bubble expansion, hydrodynamic instabilities related to the acceleration of the superbubble's shell thanks to the sudden energy input, and subsequent mixing. We also find global oscillations of our simulated superbubbles, which produce spatial variations of the X-ray spectrum, similar to what we see in the Orion-Eridanus cavity. We calculated the fraction of energy emitted in X-rays and find that with a value of a few times 10^{-4}, it is about a factor of ten below the measurements for nearby galaxies.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aims: Observations and cosmological simulations show galaxy clusters as a family of nearly self-similar objects with properties that can be described by scaling relations as a function of mass and time. Here we study the scaling relations between the galaxy velocity dispersion (σv) and X-ray quantities, such as X-ray bolometric luminosity (LBolX,500) and temperature (TX) in galaxy clusters at high redshifts (0.64 ≤ z ≤ 1.46). We also compare our results with the analogous study of the local HIFLUGCS sample. Methods: For the analysis, we use a set of 15 distant galaxy clusters extracted from the literature and selected via different methods. We also use a sample of ten newly discovered clusters selected via their X-ray emission by the XMM-Newton Distant Cluster Project (XDCP), with more than ten confirmed spectroscopic members per cluster. For both samples, the same method was used to determine σv. We also study the evolution of this scaling relation by comparing the high redshift results with the data from the HIFLUGCS sample, which is taken as a representative of the conditions in the local Universe. For such an analysis, we restrict the study to the clusters in the common LBolX,500 range. We also investigate the LX - TX and the σv - TX relations for the 15 clusters from the literature sample. Results: We report the results of the X-ray and kinematic analysis of ten newly detected high redshift clusters and provide their spectroscopic and kinematic details. For the entire distant sample, we find a slope fully consistent with the one typical of local clusters, albeit with a large associated uncertainty (~26%). We repeat the fit by freezing the slope to the value found for the HIFLUGCS systems restricted to the same luminosity range as our sample to investigate the evolution of the amplitude alone. We find a positive offset of ΔA/A = 0.44 ± 0.22 if the self-similar evolution is neglected, hence indicating the possible need for including evolutionary effects. However, the LX - TX relation is found to be in good agreement with the local relation without any significant redshift evolution. Finally, the σv - TX relation appears to slightly deviate from the theoretical expectation that galaxies and gas particles have a similar specific kinetic energy. However, the associated uncertainty is currently too large for making any conclusive statement in this regard.Appendices are available in electronic form at http://www.aanda.org
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report a systematic multi-wavelength investigation of environments of the brightest cluster galaxies (BCGs), using the X-ray data from the Chandra archive, and optical images taken with 34'x 27' field-of-view Subaru Suprime-Cam. Our goal is to help understand the relationship between the BCGs and their host clusters, and between the BCGs and other galaxies, to eventually address a question of the formation and co-evolution of BCGs and the clusters. Our results include: 1) Morphological variety of BCGs, or the second or the third brightest galaxy (BCG2, BCG3), is comparable to that of other bright red sequence galaxies, suggesting that we have a continuous variation of morphology between BCGs, BCG2, and BCG3, rather than a sharp separation between the BCG and the rest of the bright galaxies. 2) The offset of the BCG position relative to the cluster centre is correlated to the degree of concentration of cluster X-ray morphology (Spearman rho = -0.79), consistent with an interpretation that BCGs tend to be off-centered inside dynamically unsettled clusters. 3) Morphologically disturbed clusters tend to harbour the brighter BCGs, implying that the "early collapse" may not be the only major mechanism to control the BCG formation and evolution.
    Monthly Notices of the Royal Astronomical Society 03/2014; 440(1). · 5.52 Impact Factor
  • Source
    H. Böhringer, G. Chon, C. A. Collins
    [Show abstract] [Hide abstract]
    ABSTRACT: The X-ray luminosity function is an important statistic of the census of galaxy clusters and an important means to probe the cosmological model of our Universe. Based on our recently completed REFLEX II cluster sample we construct the X-ray luminosity function of galaxy clusters for several redshift slices from $z = 0$ to $z = 0.4$ and discuss its implications. We find no significant signature of redshift evolution of the luminosity function in the redshift interval. We provide the results of fits of a parameterized Schechter function and extensions of it which provide a reasonable characterization of the data. Using a model for structure formation and galaxy cluster evolution we compare the observed X-ray luminosity function with predictions for different cosmological models. For the most interesting constraints for the cosmological parameters $\Omega_m$ and $\sigma_8$ we obatain $\Omega_m \sim 0.27 \pm 0.03$ and $\sigma_8 \sim 0.80 \pm 0.03$ based on the statistical uncertainty alone. Marginalizing over the most important uncertainties, the normalisation and slope of the $L_X - M$ scaling relation, we find $\Omega_m \sim 0.29 \pm 0.04$ and $\sigma_8 \sim 0.77 \pm 0.07$ ($1\sigma$ confidence limits). We compare our results with those of the SZ-cluster survey provided by the PLANCK mission and we find very good agreement with the results using PLANCK clusters as cosmological probes, but we have some tension with PLANCK cosmological results from the microwave background anisotropies. We also make a comparison with other cluster surveys. We find good agreement with these previous results and show that the REFLEX II survey provides a significant reduction in the uncertainties compared to earlier measurements.
    Astronomy and Astrophysics 03/2014; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Observations and cosmological simulations show galaxy clusters as a family of nearly self-similar objects with properties that can be described by scaling relations as a function of e.g. mass and time. Here we study the scaling relations between the galaxy velocity dispersion and X-ray quantities like X-ray bolometric luminosity and temperature in galaxy clusters at high redshifts (0.64 $\leq$ z $\leq$ 1.46). We also compare our results with the similar study of the local HIFLUGCS sample. For the analysis, we use a set of 15 distant galaxy clusters extracted from the literature plus a sample of 10 newly discovered clusters selected in X-rays by the \XMM Distant Cluster Project (XDCP) with more than 10 confirmed spectroscopic members per cluster. We also study the evolution of this scaling relation by comparing the high redshift results with the data from the local HIFLUGCS sample. We also investigated the $L_X - T_X$ and the $\sigma_v - T_X$ relations for the 15 clusters in the literature sample. We report the results of the X-ray and kinematic analysis of 10 newly detected high redshift clusters and provide their spectroscopic and kinematic details. For the entire, distant sample we find a slope fully consistent with the one typical of local clusters, albeit with a large associated uncertainty. The study on the evolution of the amplitude reveals a positive offset if the self-similar evolution is neglected, hence possibly indicating the need for including evolutionary effects. However, the $L_X - T_X$ relation is found to be in good agreement with the local relation without any significant redshift evolution. Finally, the $\sigma_v - T_X$ relation appears to slightly deviate from the theoretical expectation that galaxies and gas particles have a similar specific kinetic energy. However, the associated uncertainty is currently too large for making any conclusive statement in this regard.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The origin of the far-infrared emission from the nearby radio galaxy M 87 remains a matter of debate. Some studies find evidence of a far-infrared excess due to thermal dust emission, whereas others propose that the far-infrared emission can be explained by synchrotron emission without the need for an additional dust emission component. We present Herschel PACS and SPIRE observations of M 87, taken as part of the science demonstration phase observations of the Herschel Virgo Cluster Survey. We compare these data with a synchrotron model based on mid-infrared, far-infrared, submm and radio data from the literature to investigate the origin of the far-infrared emission. Both the integrated SED and the Herschel surface brightness maps are adequately explained by synchrotron emission. At odds with previous claims, we find no evidence of a diffuse dust component in M 87, which is not unexpected in the harsh X-ray environment of this radio galaxy sitting at the core of the Virgo cluster.
    A&A. 10/2013; 518:L53.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have analyzed the {\it XMM-Newton} and {\it Chandra} data overlapping $\sim$16.5 deg$^2$ of Sloan Digital Sky Survey Stripe 82, including $\sim$4.6 deg$^2$ of proprietary {\it XMM-Newton} data that we present here. In total, 3362 unique X-ray sources are detected at high significance. We derive the {\it XMM-Newton} number counts and compare them with our previously reported {\it Chandra} Log$N$-Log$S$ relations and other X-ray surveys. The Stripe 82 X-ray source lists have been matched to multi-wavelength catalogs using a maximum likelihood estimator algorithm. We discovered the highest redshift ($z=5.86$) quasar yet identified in an X-ray survey. We find 2.5 times more high luminosity (L$_x \geq 10^{45}$ erg s$^{-1}$) AGN than the smaller area {\it Chandra} and {\it XMM-Newton} survey of COSMOS and 1.3 times as many identified by XBo\"otes. Comparing the high luminosity AGN we have identified with those predicted by population synthesis models, our results suggest that this AGN population is a more important component of cosmic black hole growth than previously appreciated. Approximately a third of the X-ray sources not detected in the optical are identified in the infrared, making them candidates for the elusive population of obscured high luminosity AGN in the early universe.
    Monthly Notices of the Royal Astronomical Society 09/2013; 436(4). · 5.52 Impact Factor
  • Source
    A. Weißmann, H. Böhringer, G. Chon
    [Show abstract] [Hide abstract]
    ABSTRACT: Context. Galaxy clusters are the last and largest objects to form in the standard hierarchical structure formation scenario through merging of smaller systems. The substructure frequency in the past and present epoch provides excellent means for studying the underlying cosmological model. Aims. Using X-ray observations, we study the substructure frequency as a function of redshift by quantifying and comparing the fraction of dynamically young clusters at different redshifts up to z=1.08. We are especially interested in possible biases due to the inconsistent data quality of the low-z and high-z samples. Methods. Two well-studied morphology estimators, power ratio P3/P0 and center shift w, were used to quantify the dynamical state of 129 galaxy clusters, taking into account the different observational depth and noise levels of the observations. Results. Owing to the sensitivity of P3/P0 to Poisson noise, it is essential to use datasets with similar photon statistics when studying the P3/P0-z relation. We degraded the high-quality data of the low-redshift sample to the low data quality of the high-z observations and found a shallow positive slope that is, however, not significant, indicating a slightly larger fraction of dynamically young objects at higher redshift. The w-z relation shows no significant dependence on the data quality and gives a similar result. Conclusions. We find a similar trend for P3/P0 and w, namely a very mild increase of the disturbed cluster fraction with increasing redshifts. Within the significance limits, our findings are also consistent with no evolution.
    Astronomy and Astrophysics 07/2013; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context. Galaxy clusters provide unique laboratories to study astrophysical processes on large scales and are important probes for cosmology. X-ray observations are currently the best means of detecting and characterizing galaxy clusters. Therefore X-ray surveys for galaxy clusters are one of the best ways to obtain a statistical census of the galaxy cluster population. Aims: In this paper we describe the construction of the REFLEX II galaxy cluster survey based on the southern part of the ROSAT All-Sky Survey. REFLEX II extends the REFLEX I survey by a factor of about two down to a flux limit of 1.8 × 10-12 erg s cm (0.1-2.4 keV). Methods: We describe the determination of the X-ray parameters, the process of X-ray source identification, and the construction of the survey selection function. Results: The REFLEX II cluster sample comprises currently 915 objects. A standard selection function is derived for a lower source count limit of 20 photons in addition to the flux limit. The median redshift of the sample is z = 0.102. Internal consistency checks and the comparison to several other galaxy cluster surveys imply that REFLEX II is better than 90% complete with a contamination less than 10%. Conclusions: With this publication we give a comprehensive statistical description of the REFLEX II survey and provide all the complementary information necessary for a proper modeling of the survey for astrophysical and cosmological applications. Based on observations at the European Southern Observatory La Silla, ChileFull Tables 2 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr ( or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/555/A30
    Astronomy and Astrophysics 07/2013; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Major astrophysical questions related to the formation and evolution of structures, and more specifically of galaxy groups and clusters, will still be open in the coming decade and beyond: what is the interplay of galaxy, supermassive black hole, and intergalactic gas evolution in the most massive objects in the Universe - galaxy groups and clusters? What are the processes driving the evolution of chemical enrichment of the hot diffuse gas in large-scale structures? How and when did the first galaxy groups in the Universe, massive enough to bind more than 10^7 K gas, form? Focussing on the period when groups and clusters assembled (0.5<z<2.5), we show that, due to the continuum and line emission of this hot intergalactic gas at X-ray wavelengths, Athena+, combining high sensitivity with excellent spectral and spatial resolution, will deliver breakthrough observations in view of the aforementioned issues. Indeed, the physical and chemical properties of the hot intra-cluster gas, and their evolution across time, are a key to understand the co-evolution of galaxy and supermassive black hole within their environments.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Like REFLEX I, the extended survey covers the southern sky outside the band of the Milky Way (|bII|>=20°) with regions around the Magellanic clouds excised (3 in LMC, 3 in SMC). The total survey area after this excision amounts to 4.24 steradian (or 13924°2) which corresponds to 33.75% of the sky. Different from REFLEX I, we use the refined RASS product RASS III (Voges et al. 1999, Cat. IX/10). (2 data files).
    VizieR Online Data Catalog. 06/2013;
  • Source
    N. Ota, Y. Fujino, Y. Ibaraki, H. Boehringer, G. Chon
    [Show abstract] [Hide abstract]
    ABSTRACT: Context: We present results of Suzaku observations of a nearby galaxy cluster A76 at z=0.0395. This cluster is characterized by extremely low X-ray surface brightness and is hereafter referred to as the LSB cluster. Aims: To understand the nature and thermodynamic evolution of the LSB cluster by studying the physical properties of the hot intracluster medium in A76. Methods: We conducted two-pointed Suzaku observations of A76 and examined the global gas properties of the cluster by XIS spectral analysis. We also performed deprojection analysis of annular spectra and derived radial profiles of gas temperature, density and entropy out to approximately 850 kpc (~ 0.6 r_200) and 560 kpc (~0.4 r_200) in A76 East and A76 West, respectively. Results: The measured global temperature and metal abundance are approximately 3.3 keV and 0.24 solar, respectively. From the deprojection analysis, the entropy profile is found to be flat with respect to radius. The entropy within the central region (r < 0.2r_200) is exceptionally high (~400 keV cm^2). This phenomenon is not readily explained by either gravitational heating or preheating. The X-ray morphology is clumped and irregular, and the electron density is extremely low (1e-4 -- 1e-3 cm^-3) for the observed high temperature, suggesting that A76 is in the early phase of cluster formation and the gas compression due to gravitational potential confinement is lagging behind the gas heating.
    Astronomy and Astrophysics 05/2013; · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The XMM-Newton Distant Cluster Project (XDCP) aims at the identification of a well defined sample of X-ray selected clusters of galaxies at redshifts z ≥ 0.8. As part of this project, we analyse the deep archival XMM-Newton exposure of LBQS 2212-1759 to quantify the cluster content. We validate the optical follow-up strategy as well as the X-ray selection function. We base the cluster identification of the extended X-ray sources on deep imaging with the ESO-VLT and on the CFHT-LS. The confirmation of cluster candidates is done by VLT/FORS2 spectroscopy. Photometric redshifts from CFTH-LS D4 are utilised to confirm the effectiveness of the X-ray cluster selection method. The survey sensitivity is computed to have a flux limit of S_{0.5-2.0 keV}˜ 2.5×10-15 erg s-1 for 50 % completeness in an area ˜ 0.13 deg2. We detect six clusters of galaxies above this level both in X-rays and the optical. Two newly discovered X-ray luminous clusters of galaxies in this work are at z≥1.0 and one is at z=0.41. The constructed log N-log S tends to favour a scenario where no evolution in the cluster X-ray luminosity function takes place.
    Astronomische Nachrichten 04/2013; · 1.40 Impact Factor

Publication Stats

6k Citations
1,316.49 Total Impact Points


  • 1970–2014
    • Max Planck Institute for Extraterrestrial Physics
      Arching, Bavaria, Germany
  • 2008
    • Massachusetts Institute of Technology
      • Kavli Institute for Astrophysics and Space Research
      Cambridge, Massachusetts, United States
  • 2006
    • Pontifical Catholic University of Chile
      CiudadSantiago, Santiago, Chile
  • 2005
    • Tokyo University of Science
      Edo, Tōkyō, Japan
    • University of Michigan
      • Department of Astronomy
      Ann Arbor, Michigan, United States
  • 2001–2005
    • Liverpool John Moores University
      • Astrophysics Research Institute
      Liverpool, England, United Kingdom
  • 2003
    • Harvard-Smithsonian Center for Astrophysics
      • Smithsonian Astrophysical Observatory
      Cambridge, Massachusetts, United States
  • 2002
    • Fermi National Accelerator Laboratory (Fermilab)
      Batavia, Illinois, United States
  • 2000
    • Churchill College
      Cambridge, England, United Kingdom
  • 1999
    • The Astronomical Observatory of Brera
      Merate, Lombardy, Italy
    • University of Virginia
      • Department of Astronomy
      Charlottesville, Virginia, United States
  • 1998
    • Chiba University
      • Department of Information Processing and Computer Science
      Tiba, Chiba, Japan
  • 1997
    • University of Bologna
      • Department of Physics and Astronomy DIFA
      Bologna, Emilia-Romagna, Italy
  • 1996
    • University of California, Berkeley
      Berkeley, California, United States
  • 1995
    • University of Toronto
      • Department of Physics
      Toronto, Ontario, Canada
  • 1994
    • University of Padova
      Padua, Veneto, Italy