Heng Han

Hubei University of Chinese Medicine, Shih-yen, Hubei, China

Are you Heng Han?

Claim your profile

Publications (5)5.94 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Osteosarcoma is composed of tumor osteoblasts and bone-like tissues, with malignant tumors originating from osteogenesis organization. Osteosarcoma is a primary malignant bone tumor. Invasion and metastasis of osteosarcoma affect the prognosis of patients. However, effective therapeutic treatments remain to be identified. The aim of the present study was to investigate the possible inhibitory and apoptotic effects of ginkgetin in osteosarcoma cells. 3.3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays were used to determine the effect ginkgetin exerted on the growth of osteosarcoma cells. Flow cytometry was used to determine cell apoptosis. STAT3 protein expression and activation of caspase-3/9 were measured using western blot analysis and the MTT and LDH assays, respectively. The results showed that ginkgetin inhibited cell growth and induced cell cytotoxicity in osteosarcoma cells in a dose-dependent manner. Treatment with ginkgetin significantly activated the apoptosis of osteosarcoma cells in a concentration-dependent manner. The anticancer activity of ginkgetin significantly inhibited STAT3 and promoted caspase-3/9 activation in osteosarcoma cells. The findings demonstrated that ginkgetin exerts growth inhibitory and apoptotic effects on osteosarcoma cells through the inhibition of STAT3 and activation of caspase-3/9.
    Oncology Reports 11/2015; DOI:10.3892/or.2015.4427 · 2.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence has indicated that the stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) axis plays a crucial role in the recruitment of bone marrow-derived mesenchymal stem cells (BMSCs) into lesion sites in animal models. The aim of this study was to investigate the effects of the SDF-1/CXCR4 axis on the migration of transplanted BMSCs mobilized by erythropoietin (EPO) toward the lesion site following spinal cord injury (SCI). A model of SCI was established in rats using the modified Allen's test. In the EPO group, EPO was administered at a distance of 2 mm cranially and then 2 mm caudally from the site of injury. In the BMSC group, 10 µl of BMSC suspension was administered in the same manner. In the BMSC + EPO group, both BMSCs and EPO were administered as described above. In the BMSC + EPO + AMD3100 group, in addition to the injection of BMSCs and EPO, AMD3100 (a chemokine receptor antagonist) was administered. The Basso-Beattie-Bresnahan (BBB) Locomotor Rating Scale and a grid walk test were used to estimate the neurological recovery following SCI. Enzyme-linked immunosorbent assay (ELISA) was performed to assess the tumor necrosis factor-α (TNF-α) and SDF-1 expression levels. An immunofluorescence assay was performed to identify the distribution of the BMSCs in the injured spinal cord. A Transwell migration assay was performed to examine BMSC migration. A terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay was performed to detect the apoptotic index (AI). Western blot analysis was performed to measure the expression levels of erythropoietin receptor (EPOR) and CXCR4. Significant improvements in locomotor function were detected in the BMSC + EPO group compared with the BMSC group (P<0.05). GFP-labeled BMSCs were observed and were located at the lesion sites. Additionally, EPO significantly decreased the TNF-α levels and increased the SDF-1 levels in the injured spinal cord (P<0.05).The AI in the BMSC + EPO group was significantly lower compared with that in the other groups (P<0.05). Furthermore, EPO significantly upregulated the protein expression of CXCR4 in the BMSCs and promoted the migration of the BMSCs, whereas these effects were markedly inhibited when the BMSCs were co-transplanted with AMD3100. The findings of the present study confirm that EPO mobilizes BMSCs to the lesion site following SCI and enhances the anti-apoptotic effects of the BMSCs by upregulating the expression of SDF-1/CXCR4 axis.
    International Journal of Molecular Medicine 09/2015; 36(5). DOI:10.3892/ijmm.2015.2344 · 2.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The objective of the current study was to evaluate the antiproliferative activity of sclareol against MG63 osteosarcoma cells. A 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide assay was used to evaluate the cell viability of cells following treatment with sclareol. The extent of cell death induced by sclareol was evaluated using a lactate dehydrogenase (LDH) assay. The effect of sclareol on cell cycle progression and mitochondrial membrane potential (ΛΨm) was evaluated with flow cytometry using the DNA‑binding fluorescent dyes propidium iodide and rhodamine‑123, respectively. Fluorescence microscopy was used to detect the morphological changes in the MG63 osteosarcoma cancer cells and the appearance of apoptotic bodies following sclareol treatment. The results revealed that sclareol induced dose‑ and time‑dependent growth inhibition of MG63 cancer cells with an IC50 value of 65.2 µM following a 12‑h incubation. Furthermore, sclareol induced a significant increase in the release of LDH from MG63 cell cultures, which was much more pronounced at higher doses. Fluorescence microscopy revealed that sclareol induced characteristic morphological features of apoptosis and the appearance of apoptotic bodies. Flow cytometry revealed that sclareol induced G1‑phase cell cycle arrest, which showed significant dose‑dependence. Additionally, sclareol induced a progressive and dose‑dependent reduction in the ΛΨm. In summary, sclareol inhibits the growth of osteosarcoma cancer cells via the induction of apoptosis, which is accompanied by G1‑phase cell cycle arrest and loss of ΛΨm.
    Molecular Medicine Reports 02/2015; 11(6). DOI:10.3892/mmr.2015.3325 · 1.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate the effectiveness of microplate fixation in open-door cervical expansive laminoplasty (ELP) by comparing with anchor fixation. Between January 2005 and October 2008, 35 patients with multi-segment cervical spondylotic myelopathy were treated. Of them, 15 patients underwent ELP by microplate fixation (microplate group) and 20 patients underwent ELP by anchor fixation (anchor group). In microplate group, there were 10 males and 5 females with the age of (51.2 +/- 11.5) years; the disease duration ranged from 6 to 60 months (mean, 14 months); and the preoperative Japanese Orthopaedic Association (JOA) score was 7.7 +/- 2.5. In anchor group, there were 13 males and 7 females with the age of (50.7 +/- 10.8) years; the disease duration ranged from 3 to 58 months (mean, 17 months); and the preoperative JOA score was 7.8 +/- 2.9. There was no significant difference in the general data, such as gender, age, and JOA score between 2 groups (P > 0.05). All incisions healed by first intention. Thirty-five cases were followed up 24-68 months (mean, 32 months). The operation time was (113 +/- 24) minutes in anchor group and (111 +/- 27) minutes in microplate group, showing no significant difference (t = 0.231 3, P = 0.818 5). The rate of spinal canal expansion in microplate group (60% +/- 24%) was significantly higher than that in anchor group (40% +/- 18%) (t = 2.820, P = 0.008). The JOA scores of 2 groups at 3 months and 24 months after operation were significantly higher than the preoperative scores (P < 0.01). There was no significant difference in JOA score between 2 groups at 3 months after operation (t = 1.620 5, P = 0.114 6), but the JOA score of microplate group was significantly higher than that of anchor group at 24 months after operation (t = 3.454 3, P = 0.001 5). X-ray film, MRI, and CT scan at 3-6 months after operation displayed that door spindle reached bony fusion. There was no occurrence of "re-close of door" in 2 groups. The rate of complication in microplate group (13.3%, 2/15) was significantly lower than that in anchor group (25.0%, 5/20) (chi2 = 7.160 0, P = 0.008 6). ELP by microplate fixation can achieve the stability quickly after operation, which can help patients to do functional exercises early, and has satisfactory effectiveness and less complications.
    Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiufu chongjian waike zazhi = Chinese journal of reparative and reconstructive surgery 08/2011; 25(8):946-50.
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the effect of methylprednisolone sodium succinate (MP) and mouse nerve growth factor (mNGF) for injection in treating acute spinal cord injury (ASCI) and cauda equina injury. Between December 2004 and December 2007, 43 patients with ASCI and cauda equina injury were treated, including 33 males and 10 females with an average age of 43 years (range, 32-66 years). Injured vertebral columns were C2 in 1 case, C4 in 5 cases, C5 in 7 cases, C6 in 3 cases, T8 in 1 case, T10 in 1 case, T11 in 2 cases, T12 in 3 cases, L1 in 9 cases, L2 in 5 cases, L3 in 3 cases, L4 in 1 case, and L5 in 2 cases. All the patients had sensory disturbance and motor dysfunction at admission. The Frankel scale was used for assessment of nerve function, 5 cases were rated as Grade A, 12 as Grade B, 22 as Grade C, and 4 as Grade D before operation. In 43 patients, 23 cases were treated with MP and mNGF (group A), 20 cases with MP only (group B). There was no significant difference in general data between 2 groups (P > 0.05). All the patients were admitted, received drug treatment within 8 hours of injury, and were given spinal canal decompression, bone transplantation, and internal fixation within 48 hours. The neurological function score systems of American Spinal Injury Association (ASIA) were used for neurological scores before treatment, at 1 week and 2 years after treatment. The scores of the activity of daily living (ADL) were evaluated and compared. All the patients achieved healing of incision by first intention. Forty-three cases were followed up 24-61 months with an average of 30 months. Bone graft fusion was achieved after 6-17 months, 11 months on average with stable fixation. No death and complications of osteonecrosis and central obesity occurred. There was no significant difference in neurological function scores and ADL scores between 2 groups before treatment (P > 0.05); however, the neurological function scores and ADL scores at 1 week and 2 years after treatment were higher than those before treatment (P < 0.01) in 2 groups. Group A had higher neurological function scores and ADL scores than group B (P < 0.01). At 1 week and 2 years after treatment, the improvement rates of neurological function of group A (47.8%, 11/23 and 91.3%, 21/23) were significantly higher (P < 0.01) than those of group B (30.0%, 6/20 and 70.0%, 14/20). MP and mNGF play an important role in improving the neurological function in patients with ASCI and cauda equina injury.
    Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiufu chongjian waike zazhi = Chinese journal of reparative and reconstructive surgery 10/2010; 24(10):1208-11.