Publications (194)288.45 Total impact

Article: The $\Upsilon$ and $\Upsilon^{\prime}$ Leptonic Widths, $a_{\mu}^b$ and $m_b$ from full lattice QCD
[Show abstract] [Hide abstract]
ABSTRACT: We determine the decay rate to leptons of the groundstate $\Upsilon$ meson and its first radial excitation in lattice QCD for the first time. We use radiativelyimproved NRQCD for the $b$ quarks and include $u$, $d$, $s$ and $c$ quarks in the sea with $u/d$ masses down to their physical values. We find $\Gamma(\Upsilon \rightarrow e^+e^)$ = 1.19(11) keV and $\Gamma(\Upsilon^{\prime} \rightarrow e^+e^)$ = 0.69(9) keV, both in good agreement with experiment. The decay constants we obtain are included in a summary plot of meson decay constants from lattice QCD given in the Conclusions. We also test timemoments of the vector currentcurrent correlator against values determined from the $b$ quark contribution to $\sigma(e^+e^ \rightarrow \mathrm{hadrons})$ and calculate the $b$quark piece of the hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, $a_{\mu}^b = 0.271(37) \times 10^{10}$. Finally we determine the $b$quark mass, obtaining in the $\overline{MS}$ scheme, $\overline{m}_b(\overline{m}_b, n_f=5)$ = 4.196(23) GeV, the most accurate result from lattice QCD to date.08/2014;  [Show abstract] [Hide abstract]
ABSTRACT: We present a new lattice QCD analysis of heavyquark pseudoscalarpseudoscalar correlators, using gluon configurations from the MILC collaboration that include vacuum polarization from $u$, $d$, $s$ and $c$ quarks ($n_f=4$). We extract new values for the QCD coupling and for the $c$ quark's $\mathrm{\overline{MS}}$ mass: $\alpha_\mathrm{\overline{MS}}(M_Z,n_f=5) = 0.11881(86)$ and $m_c(3\,\mathrm{GeV}, n_f=4) = 0.9896(69)$GeV. These agree well with our earlier simulations using $n_f=3$ sea quarks, vindicating the perturbative treatment of $c$ quarks in that analysis. A joint $n_f=3$, $n_f=4$ analysis gives improved values for the coupling and heavyquark masses: $\alpha_\mathrm{\overline{MS}}(M_Z,n_f=5) = 0.11856(53)$, $m_c(3\,\mathrm{GeV}, n_f=4) = 0.9864(41)$GeV, $m_b(10\,\mathrm{GeV}, n_f=5) = 3.625(25)$GeV, and $m_b/m_c=4.54(3)$. Finally we obtain a new nonperturbative result for the ratio of $c$ and $s$ quark masses: $m_c/m_s=11.652(65)$. This ratio implies $m_s(2\,\mathrm{GeV}, n_f=3)=94.0(6)$MeV when it is combined with our best $c$ mass. Combining $m_c/m_s$ with our new $m_b/m_c$ gives $m_b/m_s=52.90(44)$, which is several standard deviations away from the GeorgiJarlskop prediction from certain GUTs.08/2014;  [Show abstract] [Hide abstract]
ABSTRACT: We report the first lattice QCD calculation of the form factors for the standard model treelevel decay $B_s\to K \ell\nu$. In combination with future measurement, this calculation will provide an alternative exclusive semileptonic determination of $V_{ub}$. We compare our results with previous model calculations, make predictions for differential decay rates and branching fractions, and predict the ratio of differential branching fractions between $B_s\to K\tau\nu$ and $B_s\to K\mu\nu$. We also present standard model predictions for differential decay rate forwardbackward asymmetries, polarization fractions, and calculate potentially useful ratios of $B_s\to K$ form factors with those of the fictitious $B_s\to\eta_s$ decay. Our lattice simulations utilize NRQCD $b$ and HISQ light quarks on a subset of the MILC $2+1$ asqtad gauge configurations, including two lattice spacings and a range of light quark masses.06/2014;  [Show abstract] [Hide abstract]
ABSTRACT: We describe a new technique to determine the contribution to the anomalous magnetic moment of the muon coming from the hadronic vacuum polarization using lattice QCD. Our method reconstructs the Adler function, using Pad\'{e} approximants, from its derivatives at $q^2=0$ obtained simply and accurately from timemoments of the vector currentcurrent correlator at zero spatial momentum. We test the method using strange quark correlators on largevolume gluon field configurations that include the effect of up and down (at physical masses), strange and charm quarks in the sea at multiple values of the lattice spacing and multiple volumes and show that 1% accuracy is achievable. For the charm quark contributions we use our previously determined moments with up, down and strange quarks in the sea on very fine lattices. We find the (connected) contribution to the anomalous moment from the strange quark vacuum polarization to be $a_\mu^s = 53.41(59) \times 10^{10}$, and from charm to be $a_\mu^c = 14.42(39)\times 10^{10}$. These are in good agreement with flavourseparated results from nonlattice methods, given caveats about the comparison. The extension of our method to the light quark contribution and to that from the quarkline disconnected diagram is straightforward.03/2014; 
Article: Nonperturbative tests of the renormalization of mixed cloverstaggered currents in lattice QCD
[Show abstract] [Hide abstract]
ABSTRACT: The Fermilab Lattice and MILC collaborations have shown in oneloop lattice QCD perturbation theory that the renormalization constants of vector and axialvector mixed cloverasqtad currents are closely related to the product of those for cloverclover and asqtadasqtad (local) vector currents. To be useful for future higher precision calculations this relationship must be valid beyond oneloop and very general. We test its validity nonperturbatively using clover and Highly Improved Staggered (HISQ) strange quarks, utilising the absolute normalization of the HISQ temporal axial current. We find that the renormalization of the mixed current differs from the square root of the product of the pure HISQ and pure clover currents by $23\%$. We also compare discretization errors between the clover and HISQ formalisms.01/2014;  [Show abstract] [Hide abstract]
ABSTRACT: We have developed two methods for handling $b$ quarks in lattice QCD. One uses NRQCD (now improved to include radiative corrections) and the other uses Highly Improved Staggered Quarks (HISQ), extrapolating to the $b$ quark from lighter masses and using multiple lattice spacings to control discretisation errors. Comparison of results for the two different methods gives confidence in estimates of lattice QCD systematic errors, since they are very different in these two cases. Here we show results for heavyonium hyperfine splittings and vector currentcurrent correlator moments using HISQ quarks, to add to earlier results testing the heavy HISQ method with pseudoscalar mesons. We also show the form factor for $B \rightarrow \pi l \nu$ decay at zero recoil using NRQCD $b$ quarks and $u/d$ quarks with physical masses. This allows us to test the soft pion theorem relation ($f_0(q^2_{max})=f_B/f_{\pi}$) accurately and we find good agreement as $M_{\pi} \rightarrow 0$. }12/2013; 
Article: Prediction of the $D_s^*$ width from a calculation of its radiative decay in full lattice QCD
[Show abstract] [Hide abstract]
ABSTRACT: We determine the rate for $D_s^* \rightarrow D_s \gamma$ for the first time from lattice QCD and include the full effect of $u$, $d$ and $s$ sea quarks. The valence quarks are implemented using the Highly Improved Staggered Quark (HISQ) formalism and we normalise the vector current nonperturbatively. We obtain $M(D_s^*)M(D_s)$ of 148(4) MeV, in good agreement with experiment. The value of the decay constant of the $D_s^*$ we find to be 274(6) MeV, so that $f_{D_s^*}/f_{D_s} = 1.10(2)$. For the radiative decay we find $\Gamma(D_s^* \rightarrow D_s \gamma)$ = 0.066(26) keV. Given the experimental branching fraction for this decay we predict a total width for the $D_s^*$ of 0.070(28) keV, making this the longest lived charged vector meson.12/2013;  [Show abstract] [Hide abstract]
ABSTRACT: We determine the complete set of axial and vector form factors for the Ds to {\phi}l{\nu} decay from full lattice QCD for the first time. The valence quarks are implemented using the Highly Improved Staggered Quark action and we normalise the appropriate axial and vector currents fully nonperturbatively. The q^2 and angular distributions we obtain for the differential rate agree well with those from the BaBar experiment and, from the total branching fraction, we obtain Vcs = 1.017(63), in good agreement with that from D to Kl{\nu} semileptonic decay. We also find the mass and decay constant of the {\phi} meson in good agreement with experiment, showing that its decay to K{\bar{K}} (which we do not include here) has at most a small effect. We include an Appendix on nonperturbative renormalisation of the complete set of staggered vector and axial vector bilinears needed for this calculation.11/2013;  [Show abstract] [Hide abstract]
ABSTRACT: We calculate, for the first time using unquenched lattice QCD form factors, the standard model differential branching fractions dB/dq^{2}(B→Kℓ^{+}ℓ^{}) for ℓ=e, μ, τ and compare with experimental measurements by Belle, BABAR, CDF, and LHCb. We report on B(B→Kℓ^{+}ℓ^{}) in q^{2} bins used by experiment and predict B(B→Kτ^{+}τ^{})=(1.41±0.15)×10^{7}. We also calculate the ratio of branching fractions R_{e}^{μ}=1.00029(69) and predict R_{ℓ}^{τ}=1.176(40), for ℓ=e, μ. Finally, we calculate the "flat term" in the angular distribution of the differential decay rate F_{H}^{e,μ,τ} in experimentally motivated q^{2} bins.Physical Review Letters 10/2013; 111(16):162002. · 7.73 Impact Factor  Physical Review D 10/2013; 88(7). · 4.69 Impact Factor
 [Show abstract] [Hide abstract]
ABSTRACT: We calculate, for the first time using unquenched lattice QCD, form factors for the rare decay B→Kℓ^{+}ℓ^{} in and beyond the Standard Model. Our lattice QCD calculation utilizes a nonrelativistic QCD formulation for the b valence quarks and the highly improved staggered quark formulation for the light valence quarks. We employ the MILC 2+1 asqtad ensembles. The form factor results, based on the z expansion, are valid over the full kinematic range of q^{2}. We construct the ratios f_{0}/f_{+} and f_{T}/f_{+}, which are useful in constraining new physics and verifying effective theory form factor symmetry relations. We also discuss the calculation of Standard Model observables.Physical Review D 09/2013; 88(5). · 4.69 Impact Factor  [Show abstract] [Hide abstract]
ABSTRACT: Calculations of pseudoscalar decay constants of B, Bs, K and pi mesons with physical light quarks are presented. We use HISQ ensembles that include u,d,s and c sea quarks at three lattice spacings. HISQ is used for the valence light quarks and a radiatively improved NRQCD action for the heavy quarks. The key results are f_{B^+}=0.184(4)$ GeV, f_{B_s}=0.224(4) GeV, f_{B_s}/f_{B^+}=1.217(8), f_{K^+}/f_{pi^+}=1.1916(21), f_{K^+}=155.37(34) MeV, giving a significant improvement over previous results that required chiral extrapolation. We also calculate the Wilson flow scale w_0, finding w_0=0.1715(9) fm.09/2013;  [Show abstract] [Hide abstract]
ABSTRACT: We calculate, for the first time using unquenched lattice QCD form factors, the Standard Model differential branching fractions $dB/dq^2(B \to Kll)$ for $l=e, \mu, \tau$ and compare with experimental measurements by Belle, BABAR, CDF, and LHCb. We report on $\mathcal{B}(B \to Kll)$ in $q^2$ bins used by experiment and predict $\mathcal{B}(B \to K \tau \tau) = (1.41 \pm 0.15) 10^{7}$. We also calculate the ratio of branching fractions $R^\mu_e = 1.00029(69)$ and predict $R^\tau_l = 1.176(40)$, for $l=e, \mu$. Finally, we calculate the "flat term" in the angular distribution of the differential decay rate $F_H^{e, \mu, \tau}$ in experimentally motivated $q^2$ bins.Physical Review Letters 06/2013; 111(16). · 7.73 Impact Factor  [Show abstract] [Hide abstract]
ABSTRACT: We present a new study of the form factors for D > K semileptonic decay from lattice QCD that allows us to compare the shape of the vector form factor to experiment and, for the first time, to extract V_cs using results from all experimental q^2 bins. The valence quarks are implemented with the Highly Improved Staggered Quark action on MILC configurations that include u, d and s sea quarks. The scalar and vector currents are nonperturbatively normalised and, using phased boundary conditions, we are able to cover the full q^2 range accessible to experiment. Our result is V_cs = 0.963(5)_{expt}(14)_{lattice}. We also demonstrate that the form factors are insensitive to whether the spectator quark is u/d or s, which has implications for other decay channels.05/2013;  [Show abstract] [Hide abstract]
ABSTRACT: We determine the decay constants of the pi and K mesons on gluon field configurations from the MILC collaboration including u, d, s and c quarks. We use three values of the lattice spacing and u/d quark masses going down to the physical value. We use the w_0 parameter to fix the relative lattice spacing and f_pi to fix the overall scale. This allows us to obtain a value for f{K^+}/f{pi^+} = 1.1916(21). Comparing to the ratio of experimental leptonic decay rates gives Vus = 0.22564(28){Br(K^+)}(20){EM}(40){latt}(5){Vud} and the test of unitarity of the first row of the CabibboKobayashiMaskawa matrix: Vud^2+Vus^2+Vub^2  1 = 0.00009(51).Physical Review D 03/2013; 88(7). · 4.69 Impact Factor  [Show abstract] [Hide abstract]
ABSTRACT: We determine the strange quark condensate from lattice QCD for the first time and compare its value to that of the light quark and chiral condensates. The results come from a direct calculation of the expectation value of the trace of the quark propagator followed by subtraction of the appropriate perturbative contribution, derived here, to convert the nonnormalordered $m\bar{\psi}\psi$ to the $\bar{MS}$ scheme at a fixed scale. This is then a welldefined physical `nonperturbative' condensate that can be used in the Operator Product Expansion of currentcurrent correlators. The perturbative subtraction is calculated through $\mathcal{O}(\alpha_s)$ and estimates of higher order terms are included through fitting results at multiple lattice spacing values. The gluon field configurations used are `second generation' ensembles from the MILC collaboration that include 2+1+1 flavors of sea quarks implemented with the Highly Improved Staggered Quark action and including $u/d$ sea quarks down to physical masses. Our results are : $<\bar{s}{s}>^{\bar{MS}}(2 \mathrm{GeV})= (290(15) \mathrm{MeV})^3$, $<\bar{l}{l}>^{\bar{MS}}(2\, \mathrm{GeV})= (283(2) \mathrm{MeV})^3$, where $l$ is a light quark with mass equal to the average of the $u$ and $d$ quarks. The strange to light quark condensate ratio is 1.08(16). The light quark condensate is significantly larger than the chiral condensate in line with expectations from chiral analyses. We discuss the implications of these results for other calculations.Physical review D: Particles and fields 11/2012; 87(3).  [Show abstract] [Hide abstract]
ABSTRACT: We discuss preliminaries of a calculation of the form factors for the semileptonic decays B > pi lv, B_s > K lv, and B > K ll. We simulate with NRQCD heavy and HISQ light valence quarks on the MILC 2+1 dynamical asqtad configurations. The form factors are calculated over a range of momentum transfer to allow determination of their shape and the extraction of V_ub. Additionally, we are calculating ratios of these form factors to those for the unphysical decay B_s > eta_s. We are studying the possibility of combining these precisely determined ratios with future calculations of B_s >eta_s using HISQ bquarks to generate form factors with significantly reduced errors.10/2012;  [Show abstract] [Hide abstract]
ABSTRACT: We calculate the one loop renormalisation parameters for the heavylight axialvector and vector currents using lattice perturbation theory. We use NonRelativistic QCD (NRQCD) heavy quarks and the Highly Improved Staggered Quark (HISQ) action for the light quarks. We present results for heavylight currents with massless HISQ quarks and briefly discuss the extension to heavyheavy currents with massive HISQ quarks.10/2012;  [Show abstract] [Hide abstract]
ABSTRACT: We calculate the J/{\psi} mass, leptonic width and radiative decay rate to \gamma \eta_c from lattice QCD including u, d and s quarks in the sea for the first time. We use the Highly Improved Staggered Quark formalism and nonperturbatively normalised vector currents for the leptonic and radiative decay rates. Our results are: M_{J/\psi} M_{\eta_c} = 116.5(3.2) MeV; \Gamma(J/{\psi} to e^+e^) = 5.48(16) keV; \Gamma(J/{\psi} to \gamma \eta_c) = 2.49(19) keV. The first two are in good agreement with experiment, with \Gamma(J/{\psi} to e^+e^) providing a test of a decay matrix element in QCD, independent of CKM uncertainties, to 2%. At the same time results for the time moments of the correlation function can be compared to values from the charm contribution to \Gamma(e^+e^ to hadrons), giving a 1.5% test of QCD. Our results show that an improved experimental error would enable a similarly strong test from \Gamma(J/{\psi} to \gamma \eta_c).Physical review D: Particles and fields 08/2012; 86(9).  [Show abstract] [Hide abstract]
ABSTRACT: We determine masses and decay constants of heavyheavy and heavycharm pseudoscalar mesons as a function of heavy quark mass using a fully relativistic formalism known as Highly Improved Staggered Quarks for the heavy quark. We are able to cover the region from the charm quark mass to the bottom quark mass using MILC ensembles with lattice spacing values from 0.15 fm down to 0.044 fm. We obtain f_{B_c} = 0.427(6) GeV; m_{B_c} = 6.285(10) GeV and f_{\eta_b} = 0.667(6) GeV. Our value for f_{\eta_b} is within a few percent of f_{\Upsilon} confirming that spin effects are surprisingly small for heavyonium decay constants. Our value for f_{B_c} is significantly lower than potential model values being used to estimate production rates at the LHC. We discuss the changing physical heavyquark mass dependence of decay constants from heavyheavy through heavycharm to heavystrange mesons. A comparison between the three different systems confirms that the B_c system behaves in some ways more like a heavylight system than a heavyheavy one. Finally we summarise current results on decay constants of goldplated mesons.Physical review D: Particles and fields 07/2012; 86(7).
Publication Stats
11k  Citations  
288.45  Total Impact Points  
Top Journals
Institutions

2001–2013

The Ohio State University
 Department of Physics
Columbus, Ohio, United States 
Carnegie Mellon University
 Department of Physics
Pittsburgh, PA, United States


1979–2013

Cornell University
 Laboratory for Elementary Particle Physics
Ithaca, New York, United States


2008–2010

University of Glasgow
 School of Physics and Astronomy
Glasgow, SCT, United Kingdom


2005

University of Cambridge
 Department of Applied Mathematics and Theoretical Physics
Cambridge, ENG, United Kingdom


1999

Simon Fraser University
 Department of Physics
Burnaby, British Columbia, Canada


1977–1986

Stanford University
 SLAC National Accelerator Laboratory
Palo Alto, California, United States
