Eung Suk Lee

Kangwon National University, Kang-neung, Gangwon, South Korea

Are you Eung Suk Lee?

Claim your profile

Publications (2)6.11 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intrahepatic cholangiocarcinoma (ICC), a malignant tumor derived from the intrahepatic bile duct epithelium, has a poor prognosis and is refractory to conventional chemotherapy and radiation therapy. Thus, there is an urgent need to develop new effective therapeutic strategies for this disease. We previously found that L1 cell adhesion molecule (L1CAM) plays an important role in tumor progression of ICC, and we generated a murine mAb, A10-A3 (IgG1), that binds to the Ig1 domain of L1CAM. In the present study, we further characterized A10-A3, constructed a chimeric A10-A3 antibody (cA10-A3) containing the constant regions of human IgG1, and evaluated the therapeutic potential in a human ICC xenograft nude mice model. The affinities (KD) of A10-A3 and cA10-A3 for soluble L1CAM were 1.8 nM and 1.9 nM, respectively, as determined by competition ELISA. A10-A3 inhibited L1CAM homophilic binding and was slowly internalized into the tumor cells, but it did not significantly inhibit proliferation of ICC cells in vitro. cA10-A3 mediated antibody- dependent cell-mediated cytotoxicity in vitro and displayed anti-tumor activity in the ICC animal model. These results suggest that the humanized A10-A3 antibody may have potential as an anticancer agent for the treatment of ICC.
    Experimental and Molecular Medicine 01/2012; 44(4):293-302. · 2.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The L1CAM antibody A10-A3 efficiently reduces tumor growth in a nude mouse model. Here, we describe the crystal structure of the Fab fragment of A10-A3 determined at 2.0 angstrom resolution. The A10-A3 antibody H3 loop reveals a characteristic arrangement of exposed aromatic residues that may play an important role in antigen binding. A structure model of the complex between L1CAM Ig1-4 and A10-A3 Fab indicates that the Fab binds to three small loops outside Ig1 and a residue between Ig1 and Ig2, consistent with an epitope mapping result. The data presented here should contribute to the design of high-affinity antibody for therapeutic purposes as well as to the understanding of neural cell remodeling and cancer progression mechanism mediated by L1CAM.
    FEBS letters 01/2011; 585(1):153-8. · 3.54 Impact Factor

Publication Stats

5 Citations
6.11 Total Impact Points

Institutions

  • 2012
    • Kangwon National University
      • Department of Systems Immunology
      Kang-neung, Gangwon, South Korea
  • 2011–2012
    • Korea University
      Sŏul, Seoul, South Korea