Elizabeth T Chang

University of Maryland, Baltimore, Baltimore, Maryland, United States

Are you Elizabeth T Chang?

Claim your profile

Publications (4)10.07 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Survivin, a member of the IAP (inhibitor of apoptosis protein) family, plays important roles in maintaining cellular homoeostasis and regulating cell-cycle progression. This IAP is overexpressed in oesophageal cancer cells, leading to uncontrolled cell growth and resistance to apoptosis. CUG-BP1 (CUG-binding protein 1) is an RNA-binding protein that regulates the stability and translational efficiency of target mRNAs. In the present paper, we report that CUG-BP1 is overexpressed in oesophageal cancer cell lines and human oesophageal cancer specimens. CUG-BP1 associates with the 3'-untranslated region of survivin mRNA, thereby stabilizing the transcript and elevating its expression in oesophageal cancer cells. Our results show that overexpression of CUG-BP1 in oesophageal epithelial cells results in increased survivin mRNA stability and consequently survivin protein expression. Conversely, silencing CUG-BP1 in oesophageal cancer cells destabilizes survivin mRNA, lowering the level of survivin protein. In addition, we have found that altering CUG-BP1 expression modulates susceptibility to chemotherapy-induced apoptosis. Overexpression of CUG-BP1 in oesophageal epithelial cells increases resistance to apoptosis, whereas silencing CUG-BP1 makes oesophageal cancer cells more susceptible to chemotherapy-induced apoptosis. Co-transfection experiments with small interfering RNA directed against survivin suggest that the anti-apoptotic role for CUG-BP1 is not entirely dependent on its effect on survivin expression.
    Biochemical Journal 05/2012; 446(1):113-23. DOI:10.1042/BJ20120112 · 4.40 Impact Factor
  • Jennifer Timmons · Elizabeth T Chang · Jian-Ying Wang · Jaladanki N Rao ·
    [Show abstract] [Hide abstract]
    ABSTRACT: The epithelium of gastrointestinal (GI) mucosa has the most rapid turnover rate of any tissue in the body and its integrity is preserved through the dynamic balance between cell migration, proliferation, growth arrest and apoptosis. To maintain tissue homeostasis of the GI mucosa, the rates of epithelial cell division and apoptosis must be highly regulated by various extracellular and intracellular factors including cellular polyamines. Natural polyamines spermidine, spermine and their precursor putrescine, are organic cations in eukaryotic cells and are implicated in the control of multiple signaling pathways and distinct cellular functions. Normal intestinal epithelial growth depends on the available supply of polyamines to the dividing cells in the crypts, and polyamines also regulate intestinal epithelial cell (IEC) apoptosis. Although the specific molecular processes controlled by polyamines remains to be fully defined, increasing evidence indicates that polyamines regulate intestinal epithelial integrity by modulating the expression of various growth-related genes. In this review, we will extrapolate the current state of scientific knowledge regarding the roles of polyamines in gut mucosal homeostasis and highlight progress in cellular and molecular mechanisms of polyamines and their potential clinical applications.
    02/2012; 2(Suppl 7).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Overexpression of survivin, a member of the IAP (inhibitor of apoptosis) family, has been correlated with poorer outcomes in multiple malignancies, including oesophageal cancer. The regulatory mechanisms, particularly at the post-transcriptional level, involved in survivin overexpression are not well understood. Previous work from our group has shown that the RNA-binding protein HuR (Hu antigen R), which is also overexpressed in several malignancies, stabilizes the mRNA of XIAP (X-linked IAP), another IAP family member. In the present study, we demonstrate the binding of HuR to a 288 bp fragment in the 3'-UTR (untranslated region) of survivin mRNA in human oesophageal epithelial cells. Unexpectedly, overexpression of HuR led to a decrease in survivin expression. This was associated with decreased survivin mRNA and promoter activity, suggesting a decrease in transcription. Levels of p53, a negative transcriptional regulator of survivin, increased following HuR overexpression, in conjunction with enhanced p53 mRNA stability. Silencing p53 prior to HuR overexpression resulted in increased survivin protein and mRNA stability. These results demonstrate that, in the absence of p53, HuR overexpression results in increased survivin mRNA stability and protein expression. This provides an additional explanation for the increased survivin expression observed in oesophageal cancer cells that have lost p53.
    Biochemical Journal 03/2011; 437(1):89-96. DOI:10.1042/BJ20110028 · 4.40 Impact Factor
  • Source
    Navneeta Rathor · Shelley R Wang · Elizabeth T Chang · Jaladanki N Rao ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Intestinal epithelial cells (IECs) within crypts continuously divide and differentiate as they migrate up towards the luminal surface of the mucosa. With the onset of differentiation, IECs lose their proliferative potential, but the exact mechanism remains unknown. This current study examined the involvement of the TGF-β signaling pathway in this process. Studies were conducted in the IEC-6 cell line derived from rat small intestinal crypt cells. Cell differentiation was induced by forced expression of the Cdx2 gene, a transcription factor responsible for controlling intestinal epithelial cell differentiation. Forced expression of the Cdx2 gene in stable Cdx2-transfected IEC-6 cells resulted in a differentiated phenotype as indicated by morphological features and increased expression of sucrase-isomaltase. Levels of TGF-β type I receptor (TGFβ-RI) and TGF-β type II receptor (TGFβ-RII) increased in these differentiated epithelial cells. The induced TGFβ-RI and TGFβ-RII expression in Cdx2-transfected IEC-6 cells was associated with increased sensitivity to TGF-β-induced growth inhibition. Depletion of cellular polyamines further increased TGF-β receptor expression and additionally enhanced the response to TGF-β-induced growth inhibition. Increased TGFβ-RI and RII in polyamine-deficient cells were also associated with an induction in JunD/AP-1 activity. These results indicate that the loss of the proliferative potential in differentiated IECs results partially from the increased expression of TGF-β receptors.
    International Journal of Clinical and Experimental Medicine 01/2011; 4(4):299-308. · 1.28 Impact Factor