E Bo

Università degli Studi di Torino, Torino, Piedmont, Italy

Are you E Bo?

Claim your profile

Publications (4)13.1 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The impact of stress is widely recognized in the etiology of multiple disorders. In particular, psychological stress may increase the risk of cardiovascular, metabolic, immune, and mood disorders. Several genes are considered potential candidates to account for the deleterious consequences of stress and recent data point to role of Vgf. VGF mRNA is abundantly expressed in the hypothalamus, where it has been involved in metabolism and energy homeostasis; more recently a link between VGF-derived peptides and mood disorders has been highlighted. The following experiments were performed to address the contribution of the VGF-system to stress induced changes in mice: the distribution of VGF immuno-reactivity in hypothalamic nuclei and its modulation by social stress; the role of VGF-derived peptide TLQP-21 in plasma catecholamine release induced by acute restraint stress (RS); the efficacy of chronic TLQP-21 in a mouse model of chronic subordination stress (CSS). VGF fibers were found in high density in arcuate, dorsomedial, and suprachiasmatic and, at lower density, in lateral, paraventricular, and ventromedial hypothalamic nuclei. Central administration of either 2 or 4 mM TLQP-21 acutely altered the biphasic serum epinephrine release and decreased norepinephrine serum levels in response to RS. Finally, 28-day of 40 μg/day TLQP-21 treatment increased CSS-induced social avoidance of an unfamiliar conspecific. Overall these data support a role for TLQP-21 in stress responses providing a promising starting point to further elucidate its role as a player in stress-related human pathologies.
    Behavioural brain research 04/2012; 229(2):333-9. · 3.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Some environmental contaminants interact with hormones and may exert adverse consequences as a result of their actions as endocrine disrupting chemicals (EDCs). Exposure in people is typically a result of contamination of the food chain, inhalation of contaminated house dust or occupational exposure. EDCs include pesticides and herbicides (such as dichlorodiphenyl trichloroethane or its metabolites), methoxychlor, biocides, heat stabilisers and chemical catalysts (such as tributyltin), plastic contaminants (e.g. bisphenol A), pharmaceuticals (i.e. diethylstilbestrol; 17α-ethinylestradiol) or dietary components (such as phytoestrogens). The goal of this review is to address the sources, effects and actions of EDCs, with an emphasis on topics discussed at the International Congress on Steroids and the Nervous System. EDCs may alter reproductively-relevant or nonreproductive, sexually-dimorphic behaviours. In addition, EDCs may have significant effects on neurodevelopmental processes, influencing the morphology of sexually-dimorphic cerebral circuits. Exposure to EDCs is more dangerous if it occurs during specific 'critical periods' of life, such as intrauterine, perinatal, juvenile or puberty periods, when organisms are more sensitive to hormonal disruption, compared to other periods. However, exposure to EDCs in adulthood can also alter physiology. Several EDCs are xenoestrogens, which can alter serum lipid concentrations or metabolism enzymes that are necessary for converting cholesterol to steroid hormones. This can ultimately alter the production of oestradiol and/or other steroids. Finally, many EDCs may have actions via (or independent of) classic actions at cognate steroid receptors. EDCs may have effects through numerous other substrates, such as the aryl hydrocarbon receptor, the peroxisome proliferator-activated receptor and the retinoid X receptor, signal transduction pathways, calcium influx and/or neurotransmitter receptors. Thus, EDCs, from varied sources, may have organisational effects during development and/or activational effects in adulthood that influence sexually-dimorphic, reproductively-relevant processes or other functions, by mimicking, antagonising or altering steroidal actions.
    Journal of Neuroendocrinology 09/2011; 24(1):144-59. · 3.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endocrine-disrupting chemicals (EDC) are molecules that interfere with endocrine signaling pathways and produce adverse consequences on animal and human physiology, such as infertility or behavioral alterations. Some EDC act through binding to androgen or/and estrogen receptors primarily operating through a genomic mechanism regulating gene expression. This mechanism of action may induce profound developmental adverse effects, and the major targets of the EDC action are the gene products, i.e., mRNAs inducing the synthesis of various peptidic molecules, which include neuropeptides and enzymes related to neurotransmitters syntheses. Available immunohistochemical data on some of the systems that are affected by EDC in lower and higher vertebrates are detailed in this review.
    Journal of Toxicology and Environmental Health Part B 01/2011; 14(5-7):449-72. · 3.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tributyltin (TBT) is a largely diffused environmental pollutant, banned from paints in the European Union from 2003. However, the level of TBT (and other organotins) in food, particularly fish and shellfish, remains still high. Several studies demonstrated that TBT is involved in the development of obesity, via peripheral action, but currently, there are only a few data illustrating effects of TBT on the nervous system. In the present study, we tested the hypothesis that acute exposure to TBT may directly activate brain cells in particular, in those hypothalamic nuclei regulating the food intake. To this purpose, TBT was orally administered at a single dose (10 mg/kg/body weight) to two groups of adult male mice: regularly fed or fasted for 24 h. Mice were sacrificed 90 min after the TBT administration and perfused by 4% paraformaldehyde. Brains were quickly dissected, frozen and sectioned for immunocytochemical detection of c-fos, a common marker of cell activation. In both, fed or fasted mice, exposure to TBT induced a significant increase of c-fos expression in the arcuate nucleus in comparison to control mice. The other nuclei involved in the control of feeding behavior did not show any significant increase. These data are the first in vivo demonstration that TBT has not only peripheral effects, but also may activate elements in the brain, in particular in a crucial region for the regulation of food intake like the arcuate nucleus.
    NeuroToxicology 12/2010; 32(2):277-80. · 2.65 Impact Factor