Doreen A Cantrell

University of Dundee, Dundee, Scotland, United Kingdom

Are you Doreen A Cantrell?

Claim your profile

Publications (193)1707.75 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Myc controls the metabolic reprogramming that supports effector T cell differentiation. The expression of Myc is regulated by the T cell antigen receptor (TCR) and pro-inflammatory cytokines such as interleukin-2 (IL-2). We now show that the TCR is a digital switch for Myc mRNA and protein expression that allows the strength of the antigen stimulus to determine the frequency of T cells that express Myc. IL-2 signalling strength also directs Myc expression but in an analogue process that fine-tunes Myc quantity in individual cells via post-transcriptional control of Myc protein. Fine-tuning Myc matters and is possible as Myc protein has a very short half-life in T cells due to its constant phosphorylation by glycogen synthase kinase 3 (GSK3) and subsequent proteasomal degradation. We show that Myc only accumulates in T cells exhibiting high levels of amino acid uptake allowing T cells to match Myc expression to biosynthetic demands. The combination of digital and analogue processes allows tight control of Myc expression at the population and single cell level during immune responses. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.
    The EMBO Journal 07/2015; 34(15). DOI:10.15252/embj.201490252 · 10.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Infection with hepatitis B virus (HBV) results in disparate degrees of tissue injury: the virus can either replicate without pathological consequences or trigger immune-mediated necroinflammatory liver damage. We investigated the potential for myeloid-derived suppressor cells (MDSCs) to suppress T cell-mediated immunopathology in this setting. Granulocytic MDSCs (gMDSCs) expanded transiently in acute resolving HBV, decreasing in frequency prior to peak hepatic injury. In persistent infection, arginase-expressing gMDSCs (and circulating arginase) increased most in disease phases characterized by HBV replication without immunopathology, whilst L-arginine decreased. gMDSCs expressed liver-homing chemokine receptors and accumulated in the liver, their expansion supported by hepatic stellate cells. We provide in vitro and ex vivo evidence that gMDSCs potently inhibited T cells in a partially arginase-dependent manner. L-arginine-deprived T cells upregulated system L amino acid transporters to increase uptake of essential nutrients and attempt metabolic reprogramming. These data demonstrate the capacity of expanded arginase-expressing gMDSCs to regulate liver immunopathology in HBV infection.
    Nature medicine 05/2015; 143(6). DOI:10.1038/nm.3856 · 27.36 Impact Factor
  • Source
    George Ramsay · Doreen Cantrell
    [Show abstract] [Hide abstract]
    ABSTRACT: The T lymphocyte response to pathogens is shaped by the microenvironment. Environmental sensors in T cells include the nutrient-sensing serine/threonine kinases, adenosine monophosphate-activated protein kinase and mammalian target of rapamycin complex 1. Other environmental sensors are transcription factors such as hypoxia-inducible factor-1 and the aryl hydrocarbon receptor. The present review explores the molecular basis for the impact of environmental signals on the differentiation of conventional T cell receptor αβ T cells and how the T cell response to immune stimuli can coordinate the T cell response to environmental cues.
    Frontiers in Immunology 03/2015; 6:99. DOI:10.3389/fimmu.2015.00099
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: T follicular helper (Tfh) cells are essential in the induction of high-affinity, class-switched antibodies. The differentiation of Tfh cells is a multi-step process that depends upon the co-receptor ICOS and the activation of phosphoinositide-3 kinase leading to the expression of key Tfh cell genes. We report that ICOS signaling inactivates the transcription factor FOXO1, and a Foxo1 genetic deletion allowed for generation of Tfh cells with reduced dependence on ICOS ligand. Conversely, enforced nuclear localization of FOXO1 inhibited Tfh cell development even though ICOS was overexpressed. FOXO1 regulated Tfh cell differentiation through a broad program of gene expression exemplified by its negative regulation of Bcl6. Final differentiation to germinal center Tfh cells (GC-Tfh) was instead FOXO1 dependent as the Foxo1(-/-) GC-Tfh cell population was substantially reduced. We propose that ICOS signaling transiently inactivates FOXO1 to initiate a Tfh cell contingency that is completed in a FOXO1-dependent manner. Copyright © 2015 Elsevier Inc. All rights reserved.
    Immunity 02/2015; 42(2):239-51. DOI:10.1016/j.immuni.2015.01.017 · 21.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein kinase D2 (PKD2) is a serine and threonine kinase that is activated in T cells by diacylglycerol and protein kinase C in response to stimulation of the T cell receptor (TCR) by antigen. We quantified the activation of PKD2 at the single-cell level and found that this kinase acts as a sensitive digital amplifier of TCR engagement, enabling CD8(+) T cells to match the production of inflammatory cytokines to the quality and quantity of TCR ligands. There was a digital response pattern of PKD2 activation in response to TCR engagement, such that increasing the concentration and potency of TCR ligands increased the number of cells that exhibited activated PKD2. However, for each cell that responded to TCR stimulation, the entire cellular pool of PKD2 (~400,000 molecules) was activated. Moreover, PKD2 acted as an amplification checkpoint for antigen-stimulated digital cytokine responses and translated the differential strength of TCR signaling to determine the number of naïve CD8(+) T cells that became effector cells. Together, these results provide insights into PKD family kinases and how they act digitally to amplify signaling networks controlled by the TCR.
    Science Signaling 10/2014; 7(348). DOI:10.1126/scisignal.2005477 · 6.28 Impact Factor
  • Source
    Maria N Navarro · Juergen Goebel · Jens L Hukelmann · Doreen A Cantrell
    [Show abstract] [Hide abstract]
    ABSTRACT: The focus of the present study was to characterize the phosphoproteome of cytotoxic T cells and to explore the role of the serine threonine kinase PKD2 (Protein Kinase D2) in the phosphorylation networks of this key lymphocyte population. We used Stable Isotope of Amino acids in Culture (SILAC) combined with phosphopeptide enrichment and quantitative mass-spectrometry to determine the impact of PKD2 loss on the cytotoxic T cells phosphoproteome. We identified 15,871 phosphorylations on 3,505 proteins in cytotoxic T cells. 450 phosphosites on 281 proteins were down-regulated and 300 phosphosites on 196 proteins were up-regulated in PKD2 null cytotoxic T cells. These data give valuable new insights about the protein phosphorylation networks operational in effector T cells and reveal that PKD2 regulates directly and indirectly about 5% of the cytotoxic T cell phosphoproteome. PKD2 candidate substrates identified in this study include proteins involved in two distinct biological functions: regulation of protein sorting and intracellular vesicle trafficking, and control of chromatin structure, transcription and translation. In other cell types PKD substrates include class II histone deacetylases such as HDAC7 and actin regulatory proteins such as Slingshot. The current data show these are not PKD substrates in primary T cells revealing that the functional role of PKD isoforms is different in different cell lineages.
    Molecular &amp Cellular Proteomics 09/2014; 13(12). DOI:10.1074/mcp.M113.037242 · 6.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The anti-diabetic drug metformin regulates T-cell responses to immune activation and is proposed to function by regulating the energy-stress-sensing adenosine-monophosphate-activated protein kinase (AMPK). However, the molecular details of how metformin controls T cell immune responses have not been studied nor is there any direct evidence that metformin acts on T cells via AMPK. Here, we report that metformin regulates cell growth and proliferation of antigen-activated T cells by modulating the metabolic reprogramming that is required for effector T cell differentiation. Metformin thus inhibits the mammalian target of rapamycin complex I signalling pathway and prevents the expression of the transcription factors c-Myc and hypoxia-inducible factor 1 alpha. However, the inhibitory effects of metformin on T cells did not depend on the expression of AMPK in T cells. Accordingly, experiments with metformin inform about the importance of metabolic reprogramming for T cell immune responses but do not inform about the importance of AMPK.
    PLoS ONE 09/2014; 9(9):e106710. DOI:10.1371/journal.pone.0106710 · 3.23 Impact Factor
  • Source
    María N Navarro · Doreen A Cantrell
    [Show abstract] [Hide abstract]
    ABSTRACT: T lymphocyte proliferation and differentiation are controlled by signaling pathways initiated by the T cell antigen receptor. Here we explore how key serine-threonine kinases and their substrates mediate T cell signaling and coordinate T cell metabolism to meet the metabolic demands of participating in an immune response.
    Nature Immunology 08/2014; 15(9):808-814. DOI:10.1038/ni.2941 · 20.00 Impact Factor
  • George Ramsay · Mahima Swamy · Ella Rosenzweig · Doreen Cantrell
    [Show abstract] [Hide abstract]
    ABSTRACT: The aryl hydrocarbon receptor (AHR) is a transcription factor that controls development of innate and adaptive lymphoid cells in the intestinal mucosa and skin. Pharmacological ligands for AHR include dioxins, whereas physiological ligands include tryptophan metabolites from nutritional components or tryptophan catabolites produced by microbiota. AHR is thus an important link between environmental stimuli and immunity at barrier organs. One binding partner for AHR is the aryl hydrocarbon nuclear translocator (ARNT). A key question is whether the immune functions of AHR are solely mediated by AHR–ARNT complexes. We aimed to assess the importance of ARNT for lymphocyte populations of the intestine and the skin.
    The Lancet; 02/2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Krüppel-like factor 2 (KLF2) is a transcription factor that is highly expressed in quiescent T lymphocytes and downregulated in effector T cells. We now show that antigen receptor engagement downregulates KLF2 expression in a graded response determined by the affinity of T cell antigen receptor (TCR) ligand and the integrated activation of protein kinase B and the MAP kinases ERK1/2. The present study explores the importance of KLF2 downregulation and reveals that the loss of KLF2 controls a select portion of the CD8 effector T cell transcriptional program. In particular, KLF2 loss is required for CD8 T cells to express the inflammatory chemokine receptor CXCR3 and for maximum clonal expansion of T cells. KLF2 thus negatively controls the ability of CD8 T cells to respond to the CXCR3 ligand CXCL10. Strikingly, the KLF2 threshold for restraining expression of CXCR3 is very low and quite distinct to the KLF2 threshold for restraining T cell proliferation. KLF2 is thus an analogue (tunable) not a digital (on/off) cellular switch where the magnitude of KLF2 expression differentially modifies the T cell responses.
    PLoS ONE 10/2013; 8(10):e77537. DOI:10.1371/journal.pone.0077537 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The adenosine monophosphate (AMP)-activated protein kinase (AMPK) is activated by antigen receptor signals and energy stress in T cells. In many cell-types, AMPK can maintain energy homeostasis and can enforce quiescence to limit energy demands. We consequently evaluated the importance of AMPK for controlling the transition of metabolically active effector CD8 T lymphocytes to the metabolically quiescent catabolic memory T cells during the contraction phase of the immune response. We show that AMPKα1 activates rapidly in response to the metabolic stress caused by glucose deprivation of CD8 cytotoxic T lymphocytes (CTLs). Moreover AMPKα1 restrains mammalian target of rapamycin complex 1 (mTORC1) activity under conditions of glucose stress. AMPKα1 activity is dispensable for proliferation and differentiation of CTLs. However, AMPKα1 is required for in vivo survival of CTLs following withdrawal of immune stimulation. AMPKα1(null) T cells also show a striking defect in their ability to generate memory CD8 T-cell responses during Listeria monocytogenes infection. These results show that AMPKα1 monitors energy stress in CTLs and controls CD8 T-cell memory.
    European Journal of Immunology 04/2013; 43(4). DOI:10.1002/eji.201243008 · 4.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: T lymphocytes must regulate nutrient uptake to meet the metabolic demands of an immune response. Here we show that the intracellular supply of large neutral amino acids (LNAAs) in T cells was regulated by pathogens and the T cell antigen receptor (TCR). T cells responded to antigen by upregulating expression of many amino-acid transporters, but a single System L ('leucine-preferring system') transporter, Slc7a5, mediated uptake of LNAAs in activated T cells. Slc7a5-null T cells were unable to metabolically reprogram in response to antigen and did not undergo clonal expansion or effector differentiation. The metabolic catastrophe caused by loss of Slc7a5 reflected the requirement for sustained uptake of the LNAA leucine for activation of the serine-threonine kinase complex mTORC1 and for expression of the transcription factor c-Myc. Control of expression of the System L transporter by pathogens is thus a critical metabolic checkpoint for T cells.
    Nature Immunology 03/2013; 14(5). DOI:10.1038/ni.2556 · 20.00 Impact Factor
  • Source
    Marouan Zarrouk · Julia Rolf · Doreen Ann Cantrell
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study has examined the role of the serine/threonine kinase LKB1 in the survival and differentiation of CD4/8 double positive thymocytes. LKB1-null DPs can respond to signals from the mature α/β T-cell-antigen receptor and initiate positive selection. However, in the absence of LKB1, thymocytes fail to mature to conventional single positive cells causing severe lymphopenia in the peripheral lymphoid tissues. LKB1 thus appears to be dispensable for positive selection but important for the maturation of positively selected thymocytes. LKB1 also strikingly prevented the development of invariant Vα14 NKT cells and innate TCR αβ gut lymphocytes. Previous studies with gain of function mutants have suggested that the role of LKB1 in T cell development is mediated by its substrate the AMP-activated protein kinase (AMPK). The present study now analyses the impact of AMPK deletion in DP thymocytes and shows that the role of LKB1 during the development of both conventional and innate T cells is mediated by AMPK-independent pathways.
    PLoS ONE 03/2013; 8(3):e60217. DOI:10.1371/journal.pone.0060217 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Follicular B cell survival requires signaling from BAFFR, a receptor for BAFF and the B cell antigen receptor (BCR). This "tonic" BCR survival signal is distinct from that induced by antigen binding and may be ligand-independent. We show that inducible inactivation of the Syk tyrosine kinase, a key signal transducer from the BCR following antigen binding, resulted in the death of most follicular B cells because Syk-deficient cells were unable to survive in response to BAFF. Genetic rescue studies demonstrated that Syk transduces BAFFR survival signals via ERK and PI3 kinase. Surprisingly, BAFFR signaling directly induced phosphorylation of both Syk and the BCR-associated Igα signaling subunit, and this Syk phosphorylation required the BCR. We conclude that the BCR and Igα may be required for B cell survival because they function as adaptor proteins in a BAFFR signaling pathway leading to activation of Syk, demonstrating previously unrecognized crosstalk between the two receptors.
    Immunity 02/2013; 38(3). DOI:10.1016/j.immuni.2012.11.015 · 21.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: mTORC1 (mammalian target of rapamycin complex 1) controls transcriptional programs that determine CD8+ cytolytic T cell (CTL) fate. In some cell systems, mTORC1 couples phosphatidylinositol-3 kinase (PI3K) and Akt to the control of glucose uptake and glycolysis. However, PI3K–Akt-independent mechanisms control glucose metabolism in CD8+ T cells, and the role of mTORC1 has not been explored. The present study now demonstrates that mTORC1 activity in CD8+ T cells is not dependent on PI3K or Akt but is critical to sustain glucose uptake and glycolysis in CD8+ T cells. We also show that PI3K- and Akt-independent pathways mediated by mTORC1 regulate the expression of HIF1 (hypoxia-inducible factor 1) transcription factor complex. This mTORC1–HIF1 pathway is required to sustain glucose metabolism and glycolysis in effector CTLs and strikingly functions to couple mTORC1 to a diverse transcriptional program that controls expression of glucose transporters, multiple rate-limiting glycolytic enzymes, cytolytic effector molecules, and essential chemokine and adhesion receptors that regulate T cell trafficking. These data reveal a fundamental mechanism linking nutrient and oxygen sensing to transcriptional control of CD8+ T cell differentiation.
    Journal of Experimental Medicine 12/2012; 209(13):2441-2453. DOI:10.1084/jem.20112607 · 12.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leukocyte function-associated antigen-1 (LFA-1) and very late antigen-4 (VLA-4) integrins are essential for lymphocyte adhesion, trafficking and effector functions. Protein kinase D (PKD) has previously been implicated in lymphocyte integrin regulation through regulation of Rap1 activity. However, the true role of PKD in integrin regulation in primary lymphocytes has not previously been investigated. The major PKD isoform in lymphocytes is PKD2. Here we employed PKD2-deficient mice, a specific PKD kinase inhibitor, as well as PKD-null DT40 B cells to investigate the role of PKD in integrin regulation in lymphocytes. We report that PKD2-deficient lymphocytes bound normally to integrin ligands in static and shear flow adhesion assays. They also homed normally to lymphoid organs after adoptive transfer into wild-type mice. DT40 B cells devoid of any PKD isoforms and primary lymphocytes pretreated with a specific PKD inhibitor bound normally to integrin ligands, indicating that multiple PKD isoforms do not redundantly regulate lymphocyte integrins. In addition, PKD2-deficient lymphocytes, as well as DT40 cells devoid of any PKD isoforms, could activate Rap1 in response to B-cell receptor ligation or phorbol ester treatment. Together, these results show that the PKD family does not play a critical role in lymphocyte integrin-mediated cell adhesion or lymphocyte trafficking in vivo.
    European Journal of Immunology 05/2012; 42(5):1316-26. DOI:10.1002/eji.201142004 · 4.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PKD (protein kinase D) 2 is a serine/threonine kinase activated by diacylglycerol in response to engagement of antigen receptors in lymphocytes. To explore PKD2 regulation and function in TCR (T-cell antigen receptor) signal transduction we expressed TCR complexes with fixed affinity for self antigens in the T-cells of PKD2-null mice or mice deficient in PKD2 catalytic activity. We also developed a single cell assay to quantify PKD2 activation as T-cells respond to developmental stimuli or engagement of α/β TCR complexes in vivo. Strikingly, PKD2 loss caused increases in thymic output, lymphadenopathy and splenomegaly in TCR transgenic mice. The precise magnitude and timing of PKD2 activation during T-cell development is thus critical to regulate thymic homoeostasis. PKD2-null T-cells that exit the thymus have a normal transcriptome, but show a limited and abnormal transcriptional response to antigen. Transcriptional profiling reveals the full consequences of PKD2 loss and maps in detail the selective, but critical, function for PKD2 in signalling by α/β mature TCR complexes in peripheral T-cells.
    Biochemical Journal 03/2012; 442(3):649-59. DOI:10.1042/BJ20111700 · 4.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Platelets are highly specialized blood cells critically involved in hemostasis and thrombosis. Members of the protein kinase C (PKC) family have established roles in regulating platelet function and thrombosis, but the molecular mechanisms are not clearly understood. In particular, the conventional PKC isoform, PKCα, is a major regulator of platelet granule secretion, but the molecular pathway from PKCα to secretion is not defined. Protein kinase D (PKD) is a family of 3 kinases activated by PKC, which may represent a step in the PKC signaling pathway to secretion. In the present study, we show that PKD2 is the sole PKD member regulated downstream of PKC in platelets, and that the conventional, but not novel, PKC isoforms provide the upstream signal. Platelets from a gene knock-in mouse in which 2 key phosphorylation sites in PKD2 have been mutated (Ser707Ala/Ser711Ala) show a significant reduction in agonist-induced dense granule secretion, but not in α-granule secretion. This deficiency in dense granule release was responsible for a reduced platelet aggregation and a marked reduction in thrombus formation. Our results show that in the molecular pathway to secretion, PKD2 is a key component of the PKC-mediated pathway to platelet activation and thrombus formation through its selective regulation of dense granule secretion.
    Blood 04/2011; 118(2):416-24. DOI:10.1182/blood-2010-10-312199 · 10.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Here we report an unbiased analysis of the cytotoxic T lymphocyte (CTL) serine-threonine phosphoproteome by high-resolution mass spectrometry. We identified approximately 2,000 phosphorylations in CTLs, of which approximately 450 were controlled by T cell antigen receptor (TCR) signaling. A significantly overrepresented group of molecules identified included transcription activators, corepressors and chromatin regulators. A focus on chromatin regulators showed that CTLs had high expression of the histone deacetylase HDAC7 but continually phosphorylated and exported this transcriptional repressor from the nucleus. Dephosphorylation of HDAC7 resulted in its accumulation in the nucleus and suppressed expression of genes encoding key cytokines, cytokine receptors and adhesion molecules that determine CTL function. Screening of the CTL phosphoproteome has thus identified intrinsic pathways of serine-threonine phosphorylation that target chromatin regulators and determine the CTL functional program.
    Nature Immunology 03/2011; 12(4):352-61. DOI:10.1038/ni.2008 · 20.00 Impact Factor
  • Source
    David Finlay · Doreen A Cantrell
    [Show abstract] [Hide abstract]
    ABSTRACT: The transcriptional and metabolic programmes that control CD8(+) T cells are regulated by a diverse network of serine/threonine kinases. The view has been that the kinases AKT and mammalian target of rapamycin (mTOR) control T cell metabolism. Here, we challenge this paradigm and discuss an alternative role for these kinases in CD8(+) T cells, namely to control cell migration. Another emerging concept is that AMP-activated protein kinase (AMPK) family members control T cell metabolism and determine the effector versus memory fate of CD8(+) T cells. We speculate that one link between metabolism and immunological memory is provided by kinases that originally evolved to control T cell metabolism and have subsequently acquired the ability to control the expression of key transcription factors that regulate CD8(+) T cell effector function and migratory capacity.
    Nature Reviews Immunology 02/2011; 11(2):109-17. DOI:10.1038/nri2888 · 34.99 Impact Factor

Publication Stats

13k Citations
1,707.75 Total Impact Points


  • 2003–2015
    • University of Dundee
      • • College of Life Sciences
      • • Division of Cell Signalling and Immunology (CSI)
      Dundee, Scotland, United Kingdom
    • Babraham Institute
      Cambridge, England, United Kingdom
  • 2006
    • University of Washington Seattle
      Seattle, Washington, United States
  • 1994–2003
    • Cancer Research UK
      Londinium, England, United Kingdom
    • Sapienza University of Rome
      • Department of Experimental Medicine
      Roma, Latium, Italy
  • 2001
    • University of California, Los Angeles
      Los Ángeles, California, United States
  • 1997
    • Trinity College Dublin
      • Biochemistry
      Dublin, L, Ireland
  • 1996
    • Ontario Institute for Cancer Research
      Toronto, Ontario, Canada
  • 1990
    • Umeå University
      • Department of Molecular Biology
      Umeå, Vaesterbotten, Sweden
  • 1989
    • Imperial College London
      Londinium, England, United Kingdom
  • 1988
    • Ludwig Institute for Cancer Research
      La Jolla, California, United States
  • 1982
    • University of Nottingham
      • Centre for Sports Medicine
      Nottigham, England, United Kingdom