Chris Maliepaard

Wageningen University, Wageningen, Gelderland, Netherlands

Are you Chris Maliepaard?

Claim your profile

Publications (53)124.02 Total impact

  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thermal processing of Brassica vegetables can lead to substantial loss of potential health-promoting glucosinolates (GLs). The extent of thermal degradation of a specific GL varies in different vegetables, possibly due to differences in the composition of other metabolites within the plant matrices. An untargeted metabolomics approach followed by random forest regression was applied to identify metabolites associated to thermal GL degradation in a segregating Brassica oleracea population. Out of 413 metabolites, 15 were associated with the degradation of glucobrassicin, six with that of glucoraphanin and two with both GLs. Among these 23 metabolites three were identified as flavonols (one kaempferol- and two quercetin-derivatives) and two as other GLs (4-methoxyglucobrassicin, gluconasturtiin). Twenty quantitative trait loci (QTLs) for these metabolites, which were associated with glucoraphanin and glucobrassicin degradation, were identified on linkage groups C01, C07 and C09. Two flavonols mapped on linkage groups C07 and C09 and co-localise with the QTL for GL degradation determined previously.
    Food Chemistry 01/2014; 155:287–297. · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brassica seeds are important as basic units of plant growth and sources of vegetable oil. Seed development is regulated by many dynamic metabolic processes controlled by complex networks of spatially and temporally expressed genes. We conducted a global microarray gene co-expression analysis by measuring transcript abundance of developing seeds from two diverse B. rapa morphotypes: a pak choi (leafy-type) and a yellow sarson (oil-type), and two of their doubled haploid (DH) progenies, (1) to study the timing of metabolic processes in developing seeds, (2) to explore the major transcriptional differences in developing seeds of the two morphotypes, and (3) to identify the optimum stage for a genetical genomics study in B. rapa seed. Seed developmental stages were similar in developing seeds of pak choi and yellow sarson of B. rapa; however, the colour of embryo and seed coat differed among these two morphotypes. In this study, most transcriptional changes occurred between 25 and 35 DAP, which shows that the timing of seed developmental processes in B. rapa is at later developmental stages than in the related species B. napus. Using a Weighted Gene Co-expression Network Analysis (WGCNA), we identified 47 "gene modules", of which 27 showed a significant association with temporal and/or genotypic variation. An additional hierarchical cluster analysis identified broad spectra of gene expression patterns during seed development. The predominant variation in gene expression was according to developmental stages rather than morphotype differences. Since lipids are the major storage compounds of Brassica seeds, we investigated in more detail the regulation of lipid metabolism. Four co-regulated gene clusters were identified with 17 putative cis-regulatory elements predicted in their 1000 bp upstream region, either specific or common to different lipid metabolic pathways. This is the first study of genome-wide profiling of transcript abundance during seed development in B. rapa. The identification of key physiological events, major expression patterns, and putative cis-regulatory elements provides useful information to construct gene regulatory networks in B. rapa developing seeds and provides a starting point for a genetical genomics study of seed quality traits.
    BMC Genomics 12/2013; 14(1):840. · 4.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We analysed metabolic diversity in apples from wild species, elite material and a F1 population, using liquid chromatography–mass spectrometry (LC-QTOF-MS). The evaluated elite material appeared to have strongly reduced levels of phenolic compounds, down to 1% of the concentrations in the investigated wild germplasm. In one quarter of the F1 population, the concentrations of phenolic compounds such as quercetin derivatives, procyanidin, catechin and epicatechin were further significantly reduced, due to accumulation of recessive alleles of putatively leucoanthocyanidin reductase, a structural gene that is located at the top of LG16. In another part of F1 progeny, putatively glycosylated forms of β-glycols were up to 50 times more abundant compared to both parents. These metabolites were mapped with high logarithm of odds (LOD) scores at the top of LG8, and progeny that was homozygous recessive for the candidate gene showed the elevated levels. We hypothesize that this was caused by inheritance of non-functional alleles of enoyl-CoA hydratase gene. Both examples of transgressive segregation, where some progeny significantly deviated from both parents, were caused by accumulation of recessive alleles.
    Plant Breeding 12/2013; · 1.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biochemical characterization in combination with genetic analyses in BC 2 S 1 plants and near-isogenic lines led to the detection and validation of C. baccatum loci affecting flavor, terpenoid content and Brix level. The species Capsicum baccatum includes the most common hot peppers of the Andean cuisine, known for their rich variation in flavors and aromas. So far the C. baccatum genetic variation remained merely concealed for Capsicum annuum breeding, due to post-fertilization genetic barriers encountered in interspecific hybridization. However, to exploit the potential flavor wealth of C. baccatum we combined interspecific crossing with embryo rescue, resulting in a multi-parent BC2S1 population. Volatile and non-volatile compounds plus some physical characters were measured in mature fruits, in combination with taste evaluation by a sensory panel. An enormous variation in biochemical composition and sensory attributes was found, with almost all traits showing transgression. A population-specific genetic linkage map was developed for QTL mapping. BC2S1 QTLs were validated in an experiment with near-isogenic lines, resulting in confirmed genetic effects for physical, biochemical and sensory traits. Three findings are described in more detail: (1) A small C. baccatum LG3 introgression caused an extraordinary effect on flavor, resulting in significantly higher scores for the attributes aroma, flowers, spices, celery and chives. In an attempt to identify the responsible biochemical compounds few consistently up- and down-regulated metabolites were detected. (2) Two introgressions (LG10.1 and LG1) had major effects on terpenoid content of mature fruits, affecting at least 15 different monoterpenes. (3) A second LG3 fragment resulted in a strong increase in Brix without negative effects on fruit size. The mapping strategy, the potential application of studied traits and perspectives for breeding are discussed.
    Theoretical and Applied Genetics 11/2013; · 3.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chemical cues are considered to be the most important cues for mosquitoes to find their hosts and humans can be ranked for attractiveness to mosquitoes based on the chemical cues they emit. Human leukocyte antigen (HLA) genes are considered to be involved in the regulation of human body odor and may therefore affect human attractiveness to mosquitoes, and hence, affect the force of malaria transmission. In the present study the correlations between HLA profiles, human skin volatiles and human attractiveness to the malaria mosquito Anopheles gambiae Giles sensu stricto were examined. Skin emanations of 48 volunteers were collected by rubbing a foot over glass beads. Previously the attractiveness of these emanations to An. gambiae was determined. In this study, the chemical composition of these emanations was determined by gas chromatography - mass spectroscopy (GC-MS) and blood samples of all volunteers were taken for HLA analysis. Hierarchical Cluster Analysis (HCA), Partial Least Squares Discriminant Analysis (PLS-DA), Fisher's Exact test and random forest regression were used to test for correlations between individuals classified as either highly or poorly attractive to mosquitoes and their HLA profile and volatile composition. HLA profiling suggests that people carrying HLA gene Cw∗07 are more attractive to mosquitoes. GC-MS revealed that limonene, 2-phenylethanol and 2-ethyl-1-hexanol were associated with individuals that were poorly attractive to Anopheles gambiae and lactic acid, 2-methylbutanoic acid, tetradecanoic acid and octanal with individuals that were highly attractive. Such compounds offer potential for disruption of mosquito behavior in malaria intervention programs.
    Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases 05/2013; · 3.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) play important roles in plant development through regulation of gene expression by mRNA degradation or translational inhibition. Despite the fact that tomato (Solanum lycopersicum) is the model system for studying fleshy fruit development and ripening, only a few experimentally proven miRNA targets are known, and the role of miRNA action in these processes remains largely unknown. Here, by using parallel analysis of RNA ends (PARE) for global identification of miRNA targets and comparing four different stages of tomato fruit development, a total of 119 target genes of miRNAs were identified. Of these, 106 appeared to be new targets. A large part of the identified targets (56) coded for transcription factors. Auxin response factors, as well as two known ripening regulators, COLORLESS NON-RIPENING (CNR) and APETALA2a (SlAP2a), with developmentally regulated degradation patterns were identified. The levels of the intact messenger of both CNR and AP2a are actively modulated during ripening, by miR156/157 and miR172, respectively. Additionally, two TAS3-mRNA loci were identified as targets of miR390. Other targets such as ARGONAUTE 1 (AGO1), shown to be involved in miRNA biogenesis in other plant species, were identified, which suggests a feedback loop regulation of this process. In this study, it is shown that miRNA-guided cleavage of mRNAs is likely to play an important role in tomato fruit development and ripening.
    Journal of Experimental Botany 03/2013; · 5.79 Impact Factor
  • Source
    Roeland E Voorrips, Chris A Maliepaard
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: While the genetics of diploid inheritance are well studied and software for linkage mapping, haplotyping and QTL analysis are available, for tetraploids the available tools are limited. In order to develop such tools it would be helpful if simulated populations based on a variety of models of the tetraploid meiosis would be available. RESULTS: Here we present PedigreeSim, a software package that simulates meiosis in both diploid and tetraploid species and uses this to simulate pedigrees and cross populations. For tetraploids a variety of models can be used, including both bivalent and quadrivalent formation, varying degrees of preferential pairing of hom(oe)ologous chromosomes, different quadrivalent configurations and more. Simulation of quadrivalent meiosis results as expected in double reduction and recombination between more than two hom(oe)ologous chromosomes. The results are shown to match theoretical predictions. CONCLUSIONS: This is the first simulation software that implements all features of meiosis in tetraploids. It allows to generate data for tetraploid and diploid populations, and to investigate different models of tetraploid meiosis. The software and manual are available from http://www.plantbreeding.wur.nl/UK/software_pedigreeSim.html and as Additional files 1, 2, 3 and 4 with this publication.
    BMC Bioinformatics 09/2012; 13(1):248. · 3.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study volatile and non-volatile compounds, as well as some breeding parameters, were measured in mature fruits of elite sweet pepper (Capsicum annuum) lines and hybrids from a commercial breeding program, several cultivated genotypes and one gene bank accession. In addition, all genotypes were evaluated for taste by a trained descriptive sensory expert panel. Metabolic contrasts between genotypes were caused by clusters of volatile and non-volatile compounds, which could be related to metabolic pathways and common biochemical precursors. Clusters of phenolic derivatives, higher alkanes, sesquiterpenes and lipid derived volatiles formed the major determinants of the genotypic differences. Flavour was described with the use of 14 taste attributes, of which the texture related attributes and the sweet–sour contrast were the most discriminatory factors. The attributes juiciness, toughness, crunchiness, stickiness, sweetness, aroma, sourness and fruity/apple taste could be significantly predicted with combined volatile and non-volatile data. Fructose and (E)-2-hexen-1-ol were highly correlated with aroma, fruity/apple taste and sweetness. New relations were found for fruity/apple taste and sweetness with the compounds p-menth-1-en-9-al, (E)-β-ocimene, (Z)-2-penten-1-ol and (E)-geranylacetone. Based on the overall biochemical and sensory results, the perspectives for flavour improvement by breeding are discussed.
    Food Chemistry - FOOD CHEM. 05/2012;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tetraploid hybrid tea roses (Rosa hybrida) represent most of the commercial cultivars of cut roses and form the basis for breeding programmes. Due to intensive interspecific hybridizations, modern cut roses are complex tetraploids for which the mode of inheritance is not exactly known. The segregation patterns of molecular markers in a tetraploid mapping population of 184 genotypes, an F(1) progeny from a cross of two heterozygous parents, were investigated for disomic and tetrasomic inheritance. The possible occurrence of double reduction was studied as well. We can exclude disomic inheritance, but while our observations are more in line with a tetrasomic inheritance, we cannot exclude that there is a mixture of both inheritance modes. Two novel parental tetraploid linkage maps were constructed using markers known from literature, combined with newly generated markers. Comparison with the integrated consensus diploid map (ICM) of Spiller et al. (Theor Appl Genet 122:489-500, 2010) allowed assigning numbers to each of the linkage groups of both maps and including small linkage groups. So far, the possibility of using marker-assisted selection in breeding of tetraploid cut roses and of other species with a tetrasomic or partly tetrasomic inheritance, is still limited due to the difficulties in establishing marker-trait associations. We used these tetraploid linkage maps to determine associations between markers, two morphological traits and powdery mildew resistance. The knowledge on inheritance and marker-trait associations in tetraploid cut roses will be of direct use to cut rose breeding.
    Theoretical and Applied Genetics 04/2012; 125(3):591-607. · 3.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent advances in -omics technologies such as transcriptomics, metabolomics, and proteomics along with genotypic profiling have permitted dissection of the genetics of complex traits represented by molecular phenotypes in nonmodel species. To identify the genetic factors underlying variation in primary metabolism in potato (Solanum tuberosum), we have profiled primary metabolite content in a diploid potato mapping population, derived from crosses between S. tuberosum and wild relatives, using gas chromatography-time of flight-mass spectrometry. In total, 139 polar metabolites were detected, of which we identified metabolite quantitative trait loci for approximately 72% of the detected compounds. In order to obtain an insight into the relationships between metabolic traits and classical phenotypic traits, we also analyzed statistical associations between them. The combined analysis of genetic information through quantitative trait locus coincidence and the application of statistical learning methods provide information on putative indicators associated with the alterations in metabolic networks that affect complex phenotypic traits.
    Plant physiology 03/2012; 158(3):1306-18. · 6.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To pursue genetic improvement of lily, efficiency of both regeneration and transformation from callus cultures induced from different explants were evaluated in multiple cultivars. Thirty-five callus lines induced from filaments or styles and one control callus line derived from bulb scales of in total twenty lily cultivars representing Lilium longiflorum, Oriental × Trumpet and Longiflorum × Asiatic hybrids were maintained on a medium with 8.3 μM picloram (PIC). In this study, they were tested for their regeneration potential by transferring them onto a regeneration medium supplemented with 0.4 μM PIC and 0.044 μM 6-benzyladenine. Regeneration was obtained in all cultivars examined and the percentage varied from zero to 89 % in the 36 callus lines. Regeneration frequency was significantly influenced by the genotype (cultivar). Subculturing the calli every 4 weeks by refreshing the regeneration medium contributed positively to bulblet formation, when compared to an eight week subculture frequency. It was found that the regeneration ability generally decreased with an increasing age of the callus cultures for all cultivars. The origin of the callus (style or filament) did not lead to significant differences in regeneration frequency, but there was an interaction between callus origin and genotype. Calli of eight randomly chosen cultivars were co-cultivated with Agrobacterium tumefaciens strain AGL0 carrying binary vectors with the gus gene as reporter and putative transgenic plants were produced. GUS histochemical assays demonstrated transient and stable expression of the gus gene in both calli and regenerated lily plants. Transient expression frequencies ranged from 0.3 to 20.6 % while stable transformation was much lower, only 1.4 % as the maximum
    Plant Cell Tissue and Organ Culture 01/2012; 111(1):113-122. · 2.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To better understand and predict the complex multifactorial trait flavor, volatile and non-volatile components were measured in fresh sweet pepper (Capsicum annuum) fruits throughout the growing season in a diverse panel of 24 breeding lines, hybrids, several cultivated genotypes and one gene bank accession. Biochemical profiles were linked to individual flavor attributes, that were objectively quantified by a trained descriptive expert panel. We used a Random Forest regression approach for prediction of the flavor attributes within and between harvests. Predictions of texture related attributes (juiciness, toughness, crunchiness and stickiness of the skin) and sweetness were good (around 60–65 % in the analyses with the three harvests combined). The predictions of the attributes aroma intensity, sourness and fruity/apple were somewhat lower and more variable between harvests. (E)-2-hexen-1-ol, neopentane, p-menth-1-en-9-al, 3-hepten-2-one, (Z)-β-ocimene, (Z)-2-penten-1-ol, 1-methyl-1,4-cyclohexadiene, glucose, fructose and three unknown volatile compounds were identified as key-metabolites involved in the flavor differences between both genotypes and harvests. The complex nature of flavor is exemplified by the observed masking effect of fructose and other sugars on sourness and sourness related metabolites, like citrate. The knowledge obtained from the overall biochemical, sensory and prediction analyses forms a basis for targeted flavor improvement by breeding.
    Euphytica 01/2012; 187(1). · 1.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The study of quantitative trait’s expression over time helps to understand developmental processes which occur in the course of the growing season. Temperature and other environmental factors play an important role. The dynamics of haulm senescence was observed in a diploid potato mapping population in two consecutive years (2004 and 2005) under field conditions in Finland. The available time series data were used in a smoothed generalized linear model to characterize curves describing the senescence development in terms of its onset, mean and maximum progression rate and inflection point. These characteristics together with the individual time points were used in a Quantitative trait loci (QTL) analysis. Although QTLs occurring early in the senescence process coincided with QTLs for onset of senescence, the analysis of the time points made it difficult to study senescence as a continuous trait. Characteristics estimated from the senescence curve allowed us to study it as a developmental process and provide a meaningful biological interpretation to the results. Stable QTLs in the two experimental years were identified for progression rate and year-specific QTLs were detected for onset of senescence and inflection point. Specific interactions between loci controlling senescence development were also found. Epistatic interaction between QTLs on chromosomes 4, 5 and 7 were detected in 2004 and pleiotopic effects of QTLs on chromosomes 3 and 4 were observed in 2005. KeywordsBeta-thermal time–Epistasis–Functional QTL mapping–Smoothing–Time series–GLM
    Euphytica 01/2012; 183(3):289-302. · 1.64 Impact Factor
  • Source
    Acta horticulturae 01/2012; 953:351-356.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the post-genomic era, high-throughput technologies have led to data collection in fields like transcriptomics, metabolomics and proteomics and, as a result, large amounts of data have become available. However, the integration of these ~omics data sets in relation to phenotypic traits is still problematic in order to advance crop breeding. We have obtained population-wide gene expression and metabolite (LC-MS) data from tubers of a diploid potato population and present a novel approach to study the various ~omics datasets to allow the construction of networks integrating gene expression, metabolites and phenotypic traits. We used Random Forest regression to select subsets of the metabolites and transcripts which show association with potato tuber flesh color and enzymatic discoloration. Network reconstruction has led to the integration of known and uncharacterized metabolites with genes associated with the carotenoid biosynthesis pathway. We show that this approach enables the construction of meaningful networks with regard to known and unknown components and metabolite pathways.
    Analytica chimica acta 10/2011; 705(1-2):56-63. · 4.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The plant-pathogenic fungus Mycosphaerella graminicola (asexual stage: Septoria tritici) causes septoria tritici blotch, a disease that greatly reduces the yield and quality of wheat. This disease is economically important in most wheat-growing areas worldwide and threatens global food production. Control of the disease has been hampered by a limited understanding of the genetic and biochemical bases of pathogenicity, including mechanisms of infection and of resistance in the host. Unlike most other plant pathogens, M. graminicola has a long latent period during which it evades host defenses. Although this type of stealth pathogenicity occurs commonly in Mycosphaerella and other Dothideomycetes, the largest class of plant-pathogenic fungi, its genetic basis is not known. To address this problem, the genome of M. graminicola was sequenced completely. The finished genome contains 21 chromosomes, eight of which could be lost with no visible effect on the fungus and thus are dispensable. This eight-chromosome dispensome is dynamic in field and progeny isolates, is different from the core genome in gene and repeat content, and appears to have originated by ancient horizontal transfer from an unknown donor. Synteny plots of the M. graminicola chromosomes versus those of the only other sequenced Dothideomycete, Stagonospora nodorum, revealed conservation of gene content but not order or orientation, suggesting a high rate of intra-chromosomal rearrangement in one or both species. This observed "mesosynteny" is very different from synteny seen between other organisms. A surprising feature of the M. graminicola genome compared to other sequenced plant pathogens was that it contained very few genes for enzymes that break down plant cell walls, which was more similar to endophytes than to pathogens. The stealth pathogenesis of M. graminicola probably involves degradation of proteins rather than carbohydrates to evade host defenses during the biotrophic stage of infection and may have evolved from endophytic ancestors.
    PLoS Genetics 06/2011; 7(6):e1002070. · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Association mapping is a statistical approach combining phenotypic traits and genetic diversity in natural populations with the goal of correlating the variation present at phenotypic and allelic levels. It is essential to separate the true effect of genetic variation from other confounding factors, such as adaptation to different uses and geographical locations. The rapid availability of large datasets makes it necessary to explore statistical methods that can be computationally less intensive and more flexible for data exploration. A core collection of 168 Brassica rapa accessions of different morphotypes and origins was explored to find genetic association between markers and metabolites: tocopherols, carotenoids, chlorophylls and folate. A widely used linear model with modifications to account for population structure and kinship was followed for association mapping. In addition, a machine learning algorithm called Random Forest (RF) was used as a comparison. Comparison of results across methods resulted in the selection of a set of significant markers as promising candidates for further work. This set of markers associated to the metabolites can potentially be applied for the selection of genotypes with elevated levels of these metabolites. The incorporation of the kinship correction into the association model did not reduce the number of significantly associated markers. However incorporation of the STRUCTURE correction (Q matrix) in the linear regression model greatly reduced the number of significantly associated markers. Additionally, our results demonstrate that RF is an interesting complementary method with added value in association studies in plants, which is illustrated by the overlap in markers identified using RF and a linear mixed model with correction for kinship and population structure. Several markers that were selected in RF and in the models with correction for kinship, but not for population structure, were also identified as QTLs in two bi-parental DH populations.
    PLoS ONE 01/2011; 6(5):e19624. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The African malaria mosquito Anopheles gambiae sensu stricto continues to play an important role in malaria transmission, which is aggravated by its high degree of anthropophily, making it among the foremost vectors of this disease. In the current study we set out to unravel the strong association between this mosquito species and human beings, as it is determined by odorant cues derived from the human skin. Microbial communities on the skin play key roles in the production of human body odour. We demonstrate that the composition of the skin microbiota affects the degree of attractiveness of human beings to this mosquito species. Bacterial plate counts and 16S rRNA sequencing revealed that individuals that are highly attractive to An. gambiae s.s. have a significantly higher abundance, but lower diversity of bacteria on their skin than individuals that are poorly attractive. Bacterial genera that are correlated with the relative degree of attractiveness to mosquitoes were identified. The discovery of the connection between skin microbial populations and attractiveness to mosquitoes may lead to the development of new mosquito attractants and personalized methods for protection against vectors of malaria and other infectious diseases.
    PLoS ONE 01/2011; 6(12):e28991. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: With the recent advances in high throughput profiling techniques the amount of genetic and phenotypic data available has increased dramatically. Although many genetic diversity studies combine morphological and genetic data, metabolite profiling has yet to be integrated into these studies. For our study we selected 168 accessions representing the different morphotypes and geographic origins of Brassica rapa. Metabolite profiling was performed on all plants of this collection in the youngest expanded leaves, 5 weeks after transplanting and the same material was used for molecular marker profiling. During the same season a year later, 26 morphological characteristics were measured on plants that had been vernalized in the seedling stage. The number of groups and composition following a hierarchical clustering with molecular markers was highly correlated to the groups based on morphological traits (r = 0.420) and metabolic profiles (r = 0.476). To reveal the admixture levels in B. rapa, comparison with the results of the programme STRUCTURE was needed to obtain information on population substructure. To analyze 5546 metabolite (LC-MS) signals the groups identified with STRUCTURE were used for random forests classification. When comparing the random forests and STRUCTURE membership probabilities 86% of the accessions were allocated into the same subgroup. Our findings indicate that if extensive phenotypic data (metabolites) are available, classification based on this type of data is very comparable to genetic classification. These multivariate types of data and methodological approaches are valuable for the selection of accessions to study the genetics of selected traits and for genetic improvement programs, and additionally provide information on the evolution of the different morphotypes in B. rapa.
    Theoretical and Applied Genetics 12/2010; 122(6):1105-18. · 3.66 Impact Factor