Brian L West

University of California, Berkeley, Berkeley, California, United States

Are you Brian L West?

Claim your profile

Publications (82)673.54 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Oncogenic activation of BRAF fuels cancer growth by constitutively promoting RAS-independent mitogen-activated protein kinase (MAPK) pathway signalling. Accordingly, RAF inhibitors have brought substantially improved personalized treatment of metastatic melanoma. However, these targeted agents have also revealed an unexpected consequence: stimulated growth of certain cancers. Structurally diverse ATP-competitive RAF inhibitors can either inhibit or paradoxically activate the MAPK pathway, depending whether activation is by BRAF mutation or by an upstream event, such as RAS mutation or receptor tyrosine kinase activation. Here we have identified next-generation RAF inhibitors (dubbed 'paradox breakers') that suppress mutant BRAF cells without activating the MAPK pathway in cells bearing upstream activation. In cells that express the same HRAS mutation prevalent in squamous tumours from patients treated with RAF inhibitors, the first-generation RAF inhibitor vemurafenib stimulated in vitro and in vivo growth and induced expression of MAPK pathway response genes; by contrast the paradox breakers PLX7904 and PLX8394 had no effect. Paradox breakers also overcame several known mechanisms of resistance to first-generation RAF inhibitors. Dissociating MAPK pathway inhibition from paradoxical activation might yield both improved safety and more durable efficacy than first-generation RAF inhibitors, a concept currently undergoing human clinical evaluation with PLX8394.
    Nature 10/2015; 526(7574). DOI:10.1038/nature14982 · 41.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: The colony stimulating factor 1 receptor (CSF1R) ligands, CSF1 and interleukin-34, and the KIT ligand, stem cell factor, are expressed in glioblastoma (GB). Microglia, macrophages, blood vessels, and tumor cells also express CSF1R, and depletion of the microglia reduces tumor burden and invasive capacity. PLX3397 is an oral, small molecule that selectively inhibits CSF1R and KIT, penetrates the blood-brain barrier in model systems, and represents a novel approach for clinical development. Methods: We conducted a phase II study in patients with recurrent GB. The primary endpoint was 6-month progression-free survival (PFS6). Secondary endpoints included overall survival response rate, safety, and plasma/tumor tissue pharmacokinetics. Exploratory endpoints included pharmacodynamic measures of drug effect in blood and tumor tissue. Results: A total of 37 patients were enrolled, with 13 treated prior to a planned surgical resection (Cohort 1) and 24 treated without surgery (Cohort 2). PLX3397 was given at an oral dose of 1000 mg daily and was well tolerated. The primary efficacy endpoint of PFS6 was only 8.6%, with no objective responses. Pharmacokinetic endpoints revealed a median maximal concentration (Cmax) of 8090 ng/mL, with a time to attain Cmax of 2 hour in plasma. Tumor tissue obtained after 7 days of drug exposure revealed a median drug level of 5500 ng/g. Pharmacodynamic changes included an increase in colony stimulating factor 1 and reduced CD14(dim)/CD16+ monocytes in plasma compared with pretreatment baseline values. Conclusion: PLX3397 was well tolerated and readily crossed the blood-tumor barrier but showed no efficacy. Additional studies are ongoing, testing combination strategies and potential biomarkers to identify patients with greater likelihood of response.
    Neuro-Oncology 10/2015; DOI:10.1093/neuonc/nov245 · 5.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Microglia are dependent upon colony-stimulating factor 1 receptor (CSF1R) signaling for their survival in the adult brain, with administration of the dual CSF1R/c-kit inhibitor PLX3397 leading to the near-complete elimination of all microglia brainwide. Here, we determined the dose-dependent effects of a specific CSF1R inhibitor (PLX5622) on microglia in both wild-type and the 3xTg-AD mouse model of Alzheimer’s disease. Methods: Wild-type mice were treated with PLX5622 for up to 21 days, and the effects on microglial numbers were assessed. 3xTg-AD mice were treated with PLX5622 for 6 or 12 weeks and effects on microglial numbers and pathology subsequently assessed. Results: High doses of CSF1R inhibitor eliminate most microglia from the brain, but a 75 % lower-dose results in sustained elimination of ~30 % of microglia in both wild-type and 3xTg-AD mice. No behavioral or cognitive deficits were found in mice either depleted of microglia or treated with lower CSF1R inhibitor concentrations. Aged 3xTg-AD mice treated for 6 or 12 weeks with lower levels of PLX5622 resulted in improved learning and memory. Aβ levels and plaque loads were not altered, but microglia in treated mice no longer associated with plaques, revealing a role for the CSF1R in the microglial reaction to plaques, as well as in mediating cognitive deficits. Conclusions: We find that inhibition of CSF1R alone is sufficient to eliminate microglia and that sustained microglial elimination is concentration-dependent. Inhibition of the CSF1R at lower levels in 3xTg-AD mice prevents microglial association with plaques and improves cognition. Keywords: Alzheimer’s disease, Neuroinflammation, Cognition, Therapeutics
    Journal of Neuroinflammation 08/2015; 12(139). DOI:10.1186/s12974-015-0366-9 · 5.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Expression of the colony-stimulating factor 1 (CSF1) gene is elevated in most tenosynovial giant-cell tumors. This observation has led to the discovery and clinical development of therapy targeting the CSF1 receptor (CSF1R). Using x-ray co-crystallography to guide our drug-discovery research, we generated a potent, selective CSF1R inhibitor, PLX3397, that traps the kinase in the autoinhibited conformation. We then conducted a multicenter, phase 1 trial in two parts to analyze this compound. In the first part, we evaluated escalations in the dose of PLX3397 that was administered orally in patients with solid tumors (dose-escalation study). In the second part, we evaluated PLX3397 at the chosen phase 2 dose in an extension cohort of patients with tenosynovial giant-cell tumors (extension study). Pharmacokinetic and tumor responses in the enrolled patients were assessed, and CSF1 in situ hybridization was performed to confirm the mechanism of action of PLX3397 and that the pattern of CSF1 expression was consistent with the pathological features of tenosynovial giant-cell tumor. A total of 41 patients were enrolled in the dose-escalation study, and an additional 23 patients were enrolled in the extension study. The chosen phase 2 dose of PLX3397 was 1000 mg per day. In the extension study, 12 patients with tenosynovial giant-cell tumors had a partial response and 7 patients had stable disease. Responses usually occurred within the first 4 months of treatment, and the median duration of response exceeded 8 months. The most common adverse events included fatigue, change in hair color, nausea, dysgeusia, and periorbital edema; adverse events rarely led to discontinuation of treatment. Treatment of tenosynovial giant-cell tumors with PLX3397 resulted in a prolonged regression in tumor volume in most patients. (Funded by Plexxikon; number, NCT01004861.).
    New England Journal of Medicine 07/2015; 373(5):428-37. DOI:10.1056/NEJMoa1411366 · 55.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Unlabelled: With severe injury or disease, microglia become chronically activated and damage the local brain environment, likely contributing to cognitive decline. We previously discovered that microglia are dependent on colony-stimulating factor 1 receptor (CSF1R) signaling for survival in the healthy adult brain, and we have exploited this dependence to determine whether such activated microglia contribute deleteriously to functional recovery following a neuronal lesion. Here, we induced a hippocampal lesion in mice for 25 d via neuronal expression of diphtheria toxin A-chain, producing both a neuroinflammatory reaction and behavioral alterations. Following the 25 d lesion, we administered PLX3397, a CSF1R inhibitor, for 30 d to eliminate microglia. This post-lesion treatment paradigm improved functional recovery on elevated plus maze and Morris water maze, concomitant with reductions in elevated proinflammatory molecules, as well as normalization of lesion-induced alterations in synaptophysin and PSD-95. Further exploration of the effects of microglia on synapses in a second cohort of mice revealed that dendritic spine densities are increased with long-term microglial elimination, providing evidence that microglia shape the synaptic landscape in the adult mouse brain. Furthermore, in these same animals, we determined that microglia play a protective role during lesioning, whereby neuronal loss was potentiated in the absence of these cells. Collectively, we demonstrate that microglia exert beneficial effects during a diphtheria toxin-induced neuronal lesion, but impede recovery following insult. Significance statement: It remains unknown to what degree, and by what mechanisms, chronically activated microglia contribute to cognitive deficits associated with brain insults. We induced a genetic neuronal lesion in mice for 25 d and found activated microglia to increase inflammation, alter synaptic surrogates, and impede behavioral recovery. These lesion-associated deficits were ameliorated with subsequent microglial elimination, underscoring the importance of developing therapeutics aimed at eliminating/modulating chronic microglial activation. Additionally, we found long-term microglial depletion globally increases dendritic spines by ∼35% in the adult brain, indicating that microglia continue to sculpt the synaptic landscape in the postdevelopmental brain under homeostatic conditions. Microglial manipulation can therefore be used to investigate the utility of increasing dendritic spine numbers in postnatal conditions displaying synaptic aberrations.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 07/2015; 35(27):9977-89. DOI:10.1523/JNEUROSCI.0336-15.2015 · 6.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumor cells frequently metastasize to bone where they can generate cancer-induced bone pain (CIBP) that can be difficult to fully control using available therapies. Here we explored whether PLX3397, a high affinity, small molecular antagonist that binds to and inhibits phosphorylation of colony stimulating factor-1 receptor (CSF1R), the tyrosine-protein kinase c-Kit, and the FMS-like tyrosine kinase 3 (FLT3), can reduce CIBP. These three targets all regulate the proliferation and function of a subset of the myeloid cells including macrophages, osteoclasts, and mast cells. Preliminary experiments show that PLX3397 attenuated inflammatory pain following formalin injection into the hindpaw of the rat. As there is an inflammatory component in CIBP, involving macrophages and osteoclasts, the effect of PLX3397 was explored in a prostate model of CIBP where skeletal pain, cancer cell proliferation, tumor metastasis, and bone remodeling could be monitored in the same animal. Administration of PLX3397 was initiated on day 14 following prostate cancer cell injection when the tumor was well established and tumor-induced bone remodeling was first evident. Over the next six weeks, sustained administration of PLX3397 attenuated CIBP behaviors by approximately 50% and was equally efficacious in reducing tumor cell growth, formation of new tumor colonies in bone, and pathological tumor-induced bone remodeling. Developing a better understanding of potential effects analgesic therapies have on the tumor itself may allow the development of therapies which not only better control the pain but positively impact disease progression and overall survival in patients with bone cancer.
    Pain 05/2015; 156(9). DOI:10.1097/j.pain.0000000000000228 · 5.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Malignant melanoma is an aggressive tumor type that often develops drug resistance to targeted therapeutics. The production of colony stimulating factor 1 (CSF-1) in tumors recruits myeloid cells such as M2-polarized macrophages and myeloid derived suppressor cells (MDSC), leading to an immune suppressive tumor milieu. We used the syngeneic mouse model of BRAF (V600E) -driven melanoma SM1, which secretes CSF-1, to evaluate the ability of the CSF-1 receptor (CSF-1R) inhibitor PLX3397 to improve the antitumor efficacy of the oncogenic BRAF inhibitor vemurafenib. Combined BRAF and CSF-1R inhibition resulted in superior antitumor responses compared with either therapy alone. In mice receiving PLX3397 treatment, a dramatic reduction of tumor-infiltrating myeloid cells (TIM) was observed. In this model, we could not detect a direct effect of TIMs or pro-survival cytokines produced by TIMs that could confer resistance to PLX4032 (vemurafenib). However, the macrophage inhibitory effects of PLX3397 treatment in combination with the paradoxical activation of wild type BRAF-expressing immune cells mediated by PLX4032 resulted in more tumor-infiltrating lymphocytes (TIL). Depletion of CD8+ T-cells abrogated the antitumor response to the combination therapy. Furthermore, TILs isolated from SM1 tumors treated with PLX3397 and PLX4032 displayed higher immune potentiating activity. The combination of BRAF-targeted therapy with CSF-1R blockade resulted in increased CD8 T-cell responses in the SM1 melanoma model, supporting the ongoing evaluation of this therapeutic combination in patients with BRAF (V600) mutant metastatic melanoma.
    BMC Cancer 05/2015; 15(1):356. DOI:10.1186/s12885-015-1377-8 · 3.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abundant macrophage infiltration of solid cancers commonly correlates with poor prognosis. Tumor-promoting functions of macrophages include angiogenesis, metastasis formation and suppression of Th1-type immune responses. We here show, that successful treatment of cervical carcinoma by synthetic long peptide (SLP) vaccines induced influx of cytokine producing CD8 T-cells that strongly altered the numbers and phenotype of intratumoral macrophages. Based on the expression of CD11b, CD11c, F4/80, Ly6C, Ly6G and MHC II we identified four myeloid subpopulations that increased in numbers from 2.0- to 8.7-fold in regressing tumors. These changes of the intratumoral myeloid composition coincided with macrophage recruitment by chemokines, including CCL2 and CCL5, and completely depended on a vaccine-induced influx of tumor-specific CD8 T-cell. CD4 T-cells were dispensable. Incubation of tumor cells with T-cell derived IFNγ and TNFα recapitulated the chemokine profile observed in vivo, confirming the capacity of anti-tumor CD8 T-cells to mediate macrophage infiltration of tumors. Strikingly, complete regressions of large established tumors depended on the tumor infiltrating macrophages that were induced by this immunotherapy, since a small drug inhibitor targeting CSF-1R diminished the number of intratumoral macrophages and abrogated the complete remissions. Survival rates after therapeutic SLP vaccination deteriorated in the presence of CSF-1R blockers. Together, these data show that therapeutic peptide vaccination induced cytokine producing T-cells that possess strong macrophage skewing capacity, required for tumor shrinkage. This warrants development of macrophage-polarizing rather than macrophage depleting agents. Copyright © 2015, American Association for Cancer Research.
    04/2015; 3(9). DOI:10.1158/2326-6066.CIR-15-0052
  • Source
    Monica R. P. Elmore · Rafael J. Lee · Brian L. West · Kim N. Green ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Microglia are the primary immune cell in the brain and are postulated to play important roles outside of immunity. Administration of the dual colony-stimulating factor 1 receptor (CSF1R)/c-Kit kinase inhibitor, PLX3397, to adult mice results in the elimination of ∼99% of microglia, which remain eliminated for as long as treatment continues. Upon removal of the inhibitor, microglia rapidly repopulate the entire adult brain, stemming from a central nervous system (CNS) resident progenitor cell. Using this method of microglial elimination and repopulation, the role of microglia in both healthy and diseased states can be explored. Here, we examine the responsiveness of newly repopulated microglia to an inflammatory stimulus, as well as determine the impact of these cells on behavior, cognition, and neuroinflammation. Two month-old wild-type mice were placed on either control or PLX3397 diet for 21 d to eliminate microglia. PLX3397 diet was then removed in a subset of animals to allow microglia to repopulate and behavioral testing conducted beginning at 14 d repopulation. Finally, inflammatory profiling of the microglia-repopulated brain in response to lipopolysaccharide (LPS; 0.25 mg/kg) or phosphate buffered saline (PBS) was determined 21 d after inhibitor removal using quantitative real time polymerase chain reaction (RT-PCR), as well as detailed analyses of microglial morphologies. We find mice with repopulated microglia to perform similarly to controls by measures of behavior, cognition, and motor function. Compared to control/resident microglia, repopulated microglia had larger cell bodies and less complex branching in their processes, which resolved over time after inhibitor removal. Inflammatory profiling revealed that the mRNA gene expression of repopulated microglia was similar to normal resident microglia and that these new cells appear functional and responsive to LPS. Overall, these data demonstrate that newly repopulated microglia function similarly to the original resident microglia without any apparent adverse effects in healthy adult mice.
    PLoS ONE 04/2015; 10(4):e0122912. DOI:10.1371/journal.pone.0122912 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tyrosine kinase domain mutations are a common cause of acquired clinical resistance to tyrosine kinase inhibitors (TKIs) used to treat cancer, including the FLT3 inhibitor quizartinib. Mutation of kinase "gatekeeper" residues, which control access to an allosteric pocket adjacent to the ATP-binding site, have been frequently implicated in TKI resistance. The molecular underpinnings of gatekeeper mutation-mediated resistance are incompletely understood. We report the first co-crystal structure of FLT3 with the TKI quizartinib, which demonstrates that quizartinib binding relies on essential edge-to-face aromatic interactions with the gatekeeper F691 residue, and F830 within the highly conserved DFG motif in the activation loop. This reliance makes quizartinib critically vulnerable to gatekeeper and activation loop substitutions while minimizing the impact of mutations elsewhere. Moreover, we identify PLX3397, a novel FLT3 inhibitor that retains activity against the F691L mutant due to a binding mode that depends less vitally on specific interactions with the gatekeeper position. Copyright © 2015, American Association for Cancer Research.
    Cancer Discovery 04/2015; 5(6). DOI:10.1158/2159-8290.CD-15-0060 · 19.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Growing evidence suggests that tumor-associated macrophages (TAM) promote cancer progression and therapeutic resistance by enhancing angiogenesis, matrix-remodeling, and immunosuppression. In this study, prostate cancer under androgen blockade therapy (ABT) was investigated, demonstrating that TAMs contribute to prostate cancer disease recurrence through paracrine signaling processes. ABT induced the tumor cells to express macrophage colony-stimulating factor 1 (M-CSF1 or CSF1) and other cytokines that recruit and modulate macrophages, causing a significant increase in TAM infiltration. Inhibitors of CSF1 signaling through its receptor, CSF1R, were tested in combination with ABT, demonstrating that blockade of TAM influx in this setting disrupts tumor promotion and sustains a more durable therapeutic response compared with ABT alone. Cancer Res; 75(6); 1-13. ©2015 AACR. ©2015 American Association for Cancer Research.
    Cancer Research 03/2015; 75(6). DOI:10.1158/0008-5472.CAN-14-0992 · 9.33 Impact Factor

  • Cancer Research 10/2014; 74(19 Supplement):4781-4781. DOI:10.1158/1538-7445.AM2014-4781 · 9.33 Impact Factor

  • 39th ESMO Congress (ESMO); 09/2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumor associated macrophages (TAM) can promote angiogenesis, invasiveness and immunosuppression. The cytokine CSF-1 (or M-CSF) is an important factor of TAM recruitment and differentiation and several pharmacological agents targeting the CSF-1 receptor (CSF-1R) have been developed to regulate TAM in solid cancers. We show that the kinase inhibitor PLX3397 strongly dampened the systemic and local accumulation of macrophages driven by B16F10 melanomas, without affecting Gr-1+ myeloid derived suppressor cells. Removal of intratumoral macrophages was remarkably efficient and a modest, but statistically significant, delay in melanoma outgrowth was observed. Importantly, CSF-1R inhibition strongly enhanced tumor control by immunotherapy using tumor-specific CD8 T cells. Elevated IFNγ production by T cells was observed in mice treated with the combination of PLX3397 and immunotherapy. These results support the combined use of CSF-1R inhibition with CD8 T cell immunotherapy, especially for macrophage-stimulating tumors.
    PLoS ONE 08/2014; 9(8):e104230. DOI:10.1371/journal.pone.0104230 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer immunotherapy generally offers limited clinical benefit without coordinated strategies to mitigate the immunosuppressive nature of the tumor microenvironment. Critical drivers of immune escape in the tumor microenvironment include tumor-associated macrophages (TAM) and myeloid-derived suppressor cells (MDSC), which not only mediate immune suppression but also promote metastatic dissemination and impart resistance to cytotoxic therapies. Thus, strategies to ablate the effects of these myeloid cell populations may offer great therapeutic potential. In this report, we demonstrate in a mouse model of pancreatic ductal adenocarcinoma (PDAC) that inhibiting signaling by the myeloid growth factor receptor CSF1R can functionally reprogram macrophage responses that enhance antigen presentation and productive anti-tumor T cell responses. Investigations of this response revealed that CSF1R blockade also upregulated T cell checkpoint molecules, including PDL1 and CTLA4, thereby restraining beneficial therapeutic effects. We found that PD1 and CTLA4 antagonists showed limited efficacy as single agents to restrain PDAC growth, but that that combining these agents with CSF1R blockade potently elicited tumor regressions, even in larger established tumors. Taken together, our findings provide a rationale to reprogram immunosuppressive myeloid cell populations in the tumor microenvironment under conditions that can significantly empower the therapeutic effects of checkpoint-based immunotherapeutics.
    Cancer Research 07/2014; 74(18). DOI:10.1158/0008-5472.CAN-13-3723 · 9.33 Impact Factor

  • Cancer Research 05/2014; 73(3 Supplement):A26-A26. DOI:10.1158/1538-7445.TIM2013-A26 · 9.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The colony-stimulating factor 1 receptor (CSF1R) is a key regulator of myeloid lineage cells. Genetic loss of the CSF1R blocks the normal population of resident microglia in the brain that originates from the yolk sac during early development. However, the role of CSF1R signaling in microglial homeostasis in the adult brain is largely unknown. To this end, we tested the effects of selective CSF1R inhibitors on microglia in adult mice. Surprisingly, extensive treatment results in elimination of ∼99% of all microglia brain-wide, showing that microglia in the adult brain are physiologically dependent upon CSF1R signaling. Mice depleted of microglia show no behavioral or cognitive abnormalities, revealing that microglia are not necessary for these tasks. Finally, we discovered that the microglia-depleted brain completely repopulates with new microglia within 1 week of inhibitor cessation. Microglial repopulation throughout the CNS occurs through proliferation of nestin-positive cells that then differentiate into microglia.
    Neuron 04/2014; 82(2):380-97. DOI:10.1016/j.neuron.2014.02.040 · 15.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Colony stimulating factor-1 (CSF-1) recruits tumor-infiltrating myeloid cells (TIMs) that suppress tumor immunity, including M2 macrophages and myeloid derived suppressor cells (MDSC). The CSF-1 receptor (CSF-1R) is a tyrosine kinase that is targetable by small molecule inhibitors such as PLX3397. In this study, we used a syngeneic mouse model of BRAFV600E-driven melanoma to evaluate the ability of PLX3397 to improve the efficacy of adoptive T-cell therapy (ACT). In this model, we found that combined treatment produced superior anti-tumor responses compared with single treatments. In mice receiving the combined treatment, a dramatic reduction of TIMs and a skewing of MHCIIlow to MHCIIhi macrophages was observed. Further, mice receiving the combined treatment exhibited an increase in tumor-infiltrating lymphocytes (TILs) and T cells, as revealed by real-time imaging in vivo. In support of these observations, TILs from these mice released higher levels of IFN-γ. In conclusion, CSF-1R blockade with PLX3397 improved the efficacy of ACT immunotherapy by inhibiting the intratumoral accumulation of immune suppressive macrophages.
    Cancer Research 11/2013; 74(1). DOI:10.1158/0008-5472.CAN-13-1816 · 9.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammation and cancer, two therapeutic areas historically addressed by separate drug discovery efforts, are now coupled in treatment approaches by a growing understanding of the dynamic molecular dialogues between immune and cancer cells. Agents that target specific compartments of the immune system, therefore, not only bring new disease modifying modalities to inflammatory diseases, but also offer a new avenue to cancer therapy by disrupting immune components of the microenvironment that foster tumor growth, progression, immune evasion, and treatment resistance. McDonough feline sarcoma viral (v-fms) oncogene homolog (FMS) and v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) are two hematopoietic cell surface receptors that regulate the development and function of macrophages and mast cells, respectively. We disclose a highly specific dual FMS and KIT kinase inhibitor developed from a multifaceted chemical scaffold. As expected, this inhibitor blocks the activation of macrophages, osteoclasts, and mast cells controlled by these two receptors. More importantly, the dual FMS and KIT inhibition profile has translated into a combination of benefits in preclinical disease models of inflammation and cancer.
    Proceedings of the National Academy of Sciences 03/2013; 110(14). DOI:10.1073/pnas.1219457110 · 9.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Radiotherapy is a major frontline treatment for prostate cancer patients, yet, a large portion of these patients suffer from local tumor recurrence. Tumor-infiltrating myeloid cells (TIMs), including CD11b+F4/80+ tumor-associated macrophages (TAMs) and CD11b+Gr-1+ myeloid-derived suppressor cells (MDSCs), play critical roles in promoting tumor angiogenesis, tissue remodeling and immunosuppression. Here, we show enhanced recruitment of TAMs and MDSCs after local irradiation. Although treatment is directed to the tumor sites, the impact of irradiation is systemic as dramatic increases of MDSCs were observed in the spleen, lung, lymph nodes and peripheral blood. Of the cytokines examined, we found that macrophage colony-stimulating factor 1 (CSF1) increased by 2 fold in irradiated tumors. Enhanced macrophage migration induced by conditioned media from irradiated tumor cells was completely blocked by the selective CSF1R inhibitor, GW2580. Importantly, increased CSF1 levels were also observed in the serum of prostate cancer patients after radiotherapy. ABL1 (c-Abl), a non-receptor tyrosine kinase, known to mediate apoptosis and signal transduction under stress, is activated by irradiation. Activated ABL1 translocates to the nucleus, binds to the CSF1 promoter region and enhances CSF1 transcription. Combination therapy using a CSF1R inhibitor currently in clinical trials, PLX3397, with radiation suppressed tumor growth more effectively than radiation alone. This study highlights the importance of CSF1/CSF1R signaling in the recruitment of TIMs in response to radiotherapy and suggests their significant role in promoting tumor recurrence. Furthermore, our data supports co-targeting TIMs in conjunction with radiotherapy to achieve a more effective and durable treatment strategy for prostate cancer patients.
    Cancer Research 02/2013; 73(9). DOI:10.1158/0008-5472.CAN-12-3981 · 9.33 Impact Factor

Publication Stats

7k Citations
673.54 Total Impact Points


  • 2011-2015
    • University of California, Berkeley
      Berkeley, California, United States
  • 2010
    • Yale University
      New Haven, Connecticut, United States
  • 1986-2007
    • University of California, San Francisco
      • • Division of Hospital Medicine
      • • Department of Biochemistry and Biophysics
      • • Department of Medicine
      • • Department of Pharmaceutical Chemistry
      San Francisco, California, United States
  • 2005
    • University of California, San Diego
      San Diego, California, United States
  • 1997
    • University of Oslo
      • Biotechnology Centre of Oslo (Biotek)
      Kristiania (historical), Oslo County, Norway