Brett P Monia

Isis Pharmaceuticals, Inc., Carlsbad, California, United States

Are you Brett P Monia?

Claim your profile

Publications (205)1389.74 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Circulating transthyretin (TTR) is a critical determinant of plasma retinol-binding-protein 4 (RBP4) levels. Elevated RBP4 causes insulin resistance and lowering RBP4 improves glucose homeostasis. Since lowering TTR increases renal clearance of RBP4, we determined if decreasing TTR with antisense oligonucleotides (ASOs) improves glucose metabolism and insulin sensitivity in obesity. TTR-ASO treatment of mice with genetic or dietary-induced obesity resulted in 80-95% decrease in circulating TTR and RBP4. TTR-ASO, but not Control ASO, decreased insulin levels by 30-60% and improved insulin sensitivity in ob/ob mice and high-fat-diet-fed mice as early as 2 weeks of treatment. The reduced insulin levels were sustained for up to 9 weeks of treatment and were associated with reduced adipose tissue inflammation. Body weight was not changed. TTR-ASO treatment decreased LDL cholesterol in high-fat-diet-fed mice. The glucose infusion rate during a hyperinsulinemic-euglycemic clamp was 50% increased in high-fat-diet-fed mice treated with TTR-ASO demonstrating improved insulin sensitivity. This was also demonstrated by 20% greater inhibition of hepatic glucose production, 45-60% increase of glucose-uptake into skeletal and cardiac muscle, and 2-fold increase in insulin signaling in muscle. These data show that decreasing circulating TTR levels or altering TTR-RBP4 binding could be a potential therapeutic approach for type 2 diabetes. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
    Diabetes 12/2014; · 7.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Experimental data indicate that reducing factor XI levels attenuates thrombosis without causing bleeding, but the role of factor XI in the prevention of postoperative venous thrombosis in humans is unknown. FXI-ASO (ISIS 416858) is a second-generation antisense oligonucleotide that specifically reduces factor XI levels. We compared the efficacy and safety of FXI-ASO with those of enoxaparin in patients undergoing total knee arthroplasty. Methods In this open-label, parallel-group study, we randomly assigned 300 patients who were undergoing elective primary unilateral total knee arthroplasty to receive one of two doses of FXI-ASO (200 mg or 300 mg) or 40 mg of enoxaparin once daily. The primary efficacy outcome was the incidence of venous thromboembolism (assessed by mandatory bilateral venography or report of symptomatic events). The principal safety outcome was major or clinically relevant nonmajor bleeding. Results Around the time of surgery, the mean (±SE) factor XI levels were 0.38±0.01 units per milliliter in the 200-mg FXI-ASO group, 0.20±0.01 units per milliliter in the 300-mg FXI-ASO group, and 0.93±0.02 units per milliliter in the enoxaparin group. The primary efficacy outcome occurred in 36 of 134 patients (27%) who received the 200-mg dose of FXI-ASO and in 3 of 71 patients (4%) who received the 300-mg dose of FXI-ASO, as compared with 21 of 69 patients (30%) who received enoxaparin. The 200-mg regimen was noninferior, and the 300-mg regimen was superior, to enoxaparin (P<0.001). Bleeding occurred in 3%, 3%, and 8% of the patients in the three study groups, respectively. Conclusions This study showed that factor XI contributes to postoperative venous thromboembolism; reducing factor XI levels in patients undergoing elective primary unilateral total knee arthroplasty was an effective method for its prevention and appeared to be safe with respect to the risk of bleeding. (Funded by Isis Pharmaceuticals; FXI-ASO TKA ClinicalTrials.gov number, NCT01713361 .).
    New England Journal of Medicine 12/2014; · 54.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Triantennary N-acetyl galactosamine (GalNAc, GN3: ), a high-affinity ligand for the hepatocyte-specific asialoglycoprotein receptor (ASGPR), enhances the potency of second-generation gapmer antisense oligonucleotides (ASOs) 6-10-fold in mouse liver. When combined with next-generation ASO designs comprised of short S-cEt (S-2'-O-Et-2',4'-bridged nucleic acid) gapmer ASOs, ∼60-fold enhancement in potency relative to the parent MOE (2'-O-methoxyethyl RNA) ASO was observed. GN3: -conjugated ASOs showed high affinity for mouse ASGPR, which results in enhanced ASO delivery to hepatocytes versus non-parenchymal cells. After internalization into cells, the GN3: -ASO conjugate is metabolized to liberate the parent ASO in the liver. No metabolism of the GN3: -ASO conjugate was detected in plasma suggesting that GN3: acts as a hepatocyte targeting prodrug that is detached from the ASO by metabolism after internalization into the liver. GalNAc conjugation also enhanced potency and duration of the effect of two ASOs targeting human apolipoprotein C-III and human transthyretin (TTR) in transgenic mice. The unconjugated ASOs are currently in late stage clinical trials for the treatment of familial chylomicronemia and TTR-mediated polyneuropathy. The ability to translate these observations in humans offers the potential to improve therapeutic index, reduce cost of therapy and support a monthly dosing schedule for therapeutic suppression of gene expression in the liver using ASOs.
    Nucleic Acids Research 07/2014; · 8.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Coagulation factor XI is proposed as therapeutic target for anticoagulation. However, it is still unclear whether the antithrombotic properties of factor XI inhibitors influence atherosclerotic disease and atherothrombosis. Our aim is to investigate whether factor XI antisense oligonucleotides could prevent thrombus formation on acutely ruptured atherosclerotic plaques.
    Arteriosclerosis Thrombosis and Vascular Biology 06/2014; · 6.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In obesity and type 2 diabetes, Glut4 glucose transporter expression is decreased selectively in adipocytes. Adipose-specific knockout or overexpression of Glut4 alters systemic insulin sensitivity. Here we show, using DNA array analyses, that nicotinamide N-methyltransferase (Nnmt) is the most strongly reciprocally regulated gene when comparing gene expression in white adipose tissue (WAT) from adipose-specific Glut4-knockout or adipose-specific Glut4-overexpressing mice with their respective controls. NNMT methylates nicotinamide (vitamin B3) using S-adenosylmethionine (SAM) as a methyl donor. Nicotinamide is a precursor of NAD(+), an important cofactor linking cellular redox states with energy metabolism. SAM provides propylamine for polyamine biosynthesis and donates a methyl group for histone methylation. Polyamine flux including synthesis, catabolism and excretion, is controlled by the rate-limiting enzymes ornithine decarboxylase (ODC) and spermidine-spermine N(1)-acetyltransferase (SSAT; encoded by Sat1) and by polyamine oxidase (PAO), and has a major role in energy metabolism. We report that NNMT expression is increased in WAT and liver of obese and diabetic mice. Nnmt knockdown in WAT and liver protects against diet-induced obesity by augmenting cellular energy expenditure. NNMT inhibition increases adipose SAM and NAD(+) levels and upregulates ODC and SSAT activity as well as expression, owing to the effects of NNMT on histone H3 lysine 4 methylation in adipose tissue. Direct evidence for increased polyamine flux resulting from NNMT inhibition includes elevated urinary excretion and adipocyte secretion of diacetylspermine, a product of polyamine metabolism. NNMT inhibition in adipocytes increases oxygen consumption in an ODC-, SSAT- and PAO-dependent manner. Thus, NNMT is a novel regulator of histone methylation, polyamine flux and NAD(+)-dependent SIRT1 signalling, and is a unique and attractive target for treating obesity and type 2 diabetes.
    Nature 04/2014; 508(7495):258-62. · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spinal and bulbar muscular atrophy (SBMA) is caused by the polyglutamine androgen receptor (polyQ-AR), a protein expressed by both lower motor neurons and skeletal muscle. Although viewed as a motor neuronopathy, data from patients and mouse models suggest that muscle contributes to disease pathogenesis. Here, we tested this hypothesis using AR113Q knockin and human bacterial artificial chromosome/clone (BAC) transgenic mice that express the full-length polyQ-AR and display androgen-dependent weakness, muscle atrophy, and early death. We developed antisense oligonucleotides that suppressed AR gene expression in the periphery but not the CNS after subcutaneous administration. Suppression of polyQ-AR in the periphery rescued deficits in muscle weight, fiber size, and grip strength, reversed changes in muscle gene expression, and extended the lifespan of mutant males. We conclude that polyQ-AR expression in the periphery is an important contributor to pathology in SBMA mice and that peripheral administration of therapeutics should be explored for SBMA patients.
    Cell Reports 04/2014; · 7.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The established association between inflammatory bowel disease and colorectal cancer underscores the importance of inflammation in colon cancer development. Based on evidence that hemostatic proteases are powerful modifiers of both inflammatory pathologies and tumor biology, gene-targeted mice carrying low levels of prothrombin were used to directly test the hypothesis that prothrombin contributes to tumor development in colitis-associated colon cancer (CAC). Remarkably, imposing a modest 50% reduction in circulating prothrombin in fII+/- mice, a level that carries no significant bleeding risk, dramatically decreased adenoma formation following an azoxymethane/dextran sodium sulfate challenge. Similar results were obtained with pharmacological inhibition of prothrombin expression or inhibition of thrombin proteolytic activity. Detailed longitudinal analyses showed that the role of thrombin in tumor development in CAC was temporally associated with the antecedent inflammatory colitis. However, direct studies of the antecedent colitis showed that mice carrying half-normal prothrombin levels were comparable to control mice in mucosal damage, inflammatory cell infiltration and associated local cytokine levels. These results suggest that thrombin supports early events coupled to inflammation-mediated tumorigenesis in CAC that are distinct from overall inflammation-induced tissue damage and inflammatory cell trafficking. That prothrombin is linked to early events in CAC was strongly inferred by the observation that prothrombin deficiency dramatically reduced the formation of very early, pre-cancerous aberrant crypt foci. Given the importance of inflammation in the development of colon cancer, these studies suggest that therapeutic interventions at the level of hemostatic factors may be an effective means to prevent and/or impede colitis-associated colon cancer progression.
    Cancer Research 04/2014; · 9.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Central venous catheter thrombosis can cause venous obstruction and pulmonary embolism. To determine the extent to which catheter thrombosis is triggered by the contact or extrinsic pathway of coagulation, we used antisense oligonucleotides (ASOs) to selectively knockdown factor (f) XII, fXI, or high-molecular-weight kininogen (HK), key components of the contact pathway, or fVII, which is essential for the extrinsic pathway. Knockdown of contact pathway components prolonged the activated partial thromboplastin time and decreased target protein activity levels by over 90%, whereas fVII knockdown prolonged the prothrombin time and reduced fVII activity to a similar extent. Using a rabbit model of catheter thrombosis, catheters implanted in the jugular vein were assessed daily until they occluded, up to a maximum of 35 days. Compared with control, fXII and fXI ASO treatment prolonged the time to catheter occlusion by 2.2- and 2.3-fold, respectively. In contrast, both HK and fVII knockdown did not significantly prolong the time to occlusion, and dual treatment with fVII- and fXI-directed ASOs produced a time to occlusion similar to that with the fXI ASO alone. These findings suggest that catheter thrombosis is triggered via the contact pathway and identify fXII and fXI as potential targets to attenuate this complication.
    Blood 02/2014; · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alpha-1 antitrypsin (AAT) is a serum protease inhibitor that belongs to the serpin superfamily. Mutations in AAT are associated with α-1 antitrypsin deficiency (AATD), a rare genetic disease with two distinct manifestations: AATD lung disease and AATD liver disease. AATD lung disease is caused by loss-of-function of AAT and can be treated with plasma-derived AAT. AATD liver disease is due to the aggregation and retention of mutant AAT protein in the liver; the only treatment available for AATD liver disease is liver transplantation. Here we demonstrate that antisense oligonucleotides (ASOs) targeting human AAT efficiently reduce levels of both short and long human AAT transcript in vitro and in transgenic mice, providing a novel therapy for AATD liver disease. In addition, ASO-mediated depletion of mouse AAT may offer a useful animal model for the investigation of AATD lung disease.
    Rare diseases (Austin, Tex.). 01/2014; 2:e28511.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alpha-1 antitrypsin deficiency (AATD) is a rare genetic disease that results from mutations in the alpha-1 antitrypsin (AAT) gene. The mutant AAT protein aggregates and accumulates in the liver leading to AATD liver disease, which is only treatable by liver transplant. The PiZ transgenic mouse strain expresses a human AAT (hAAT) transgene that contains the AATD-associated Glu342Lys mutation. PiZ mice exhibit many AATD symptoms, including AAT protein aggregates, increased hepatocyte death, and liver fibrosis. In the present study, we systemically treated PiZ mice with an antisense oligonucleotide targeted against hAAT (AAT-ASO) and found reductions in circulating levels of AAT and both soluble and aggregated AAT protein in the liver. Furthermore, AAT-ASO administration in these animals stopped liver disease progression after short-term treatment, reversed liver disease after long-term treatment, and prevented liver disease in young animals. Additionally, antisense oligonucleotide treatment markedly decreased liver fibrosis in this mouse model. Administration of AAT-ASO in nonhuman primates led to an approximately 80% reduction in levels of circulating normal AAT, demonstrating potential for this approach in higher species. Antisense oligonucleotides thus represent a promising therapy for AATD liver disease.
    The Journal of clinical investigation 12/2013; · 15.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The repressor element-1 silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) is one of the first negative-acting transcriptional regulators implicated in vertebrate development thought to regulate hundreds of neuron-specific genes. However, its function in the adult system remains elusive. Here we employ second-generation antisense oligonucleotides (ASOs) to study the impact of rest-mediated suppression on gene expression. We demonstrate specific reductions in REST levels in vitro, and in vivo in mouse liver following treatment with ASOs, and we show that ASO mediated-REST suppression results in the elevation in expression of many neuronal genes including brain-derived neurotrophic factor, Synapsin1 (syn1) and β3-tubulin in BALB/c liver. Furthermore, we show the elevation of the affected proteins in plasma following ASO treatment. Finally, microarray analysis was applied to identify a broad range of genes modulated by REST suppression in mouse liver. Our findings suggest that REST may be an important target for neurodegenerative diseases like Huntington's disease, is also involved in the regulation of a broad range of additional cellular pathways, and that the antisense approach is a viable strategy for selectively modulating REST activity in vivo.
    Nucleic acid therapeutics. 12/2013; 23(6):389-400.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Advances in the medicinal chemistry of antisense oligonucleotide drugs have been instrumental in achieving and optimizing antisense activity in cell types other than hepatocytes, the cell type that is most sensitive to antisense effects following systemic treatment. To broadly characterize the effects of antisense drugs on target messenger RNA (mRNA) levels in different organs and cell types in animals, we have developed a sensitive RNA in situ hybridization technique using the noncoding RNA metastasis associated lung adenocarcinoma transcript 1 (MALAT1) as a surrogate target. We have used this technique to evaluate the effects of 2'-O-methoxy ethyl (MOE) and constrained ethyl bicyclic nucleic acid (cEt) gapmer antisense oligonucleotides (ASOs). ASO tissue distribution was also characterized using immunohistochemical techniques, and MALAT1 mRNA reductions were confirmed by quantitative real time-polymerase chain reaction. Our findings demonstrate that systemic antisense drug administration in both mice and non-human primates resulted in marked reductions in MALAT1 RNA in many tissues and cell types other than liver including kidney, muscle, lung, adipose, adrenal gland, and peripheral nerve tissue. As expected, ASOs with cEt chemistry were more efficacious than MOE ASO in all tissues examined.
    Nucleic acid therapeutics. 10/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: ISIS 481464 is a constrained ethyl (cEt) modified phosphorothioate antisense oligonucleotide (ASO) targeting signal transducer and activator of transcription 3 (STAT3) studied in mice and monkey to support oncology clinical trials. Six-week toxicology studies were performed in mice and cynomolgus monkey (up to 70 and 30 mg/kg/week respectively). Reduction in STAT3 protein up to 90% of control was observed in monkey. Cynomolgus monkey was considered the most relevant species to human with respect to pharmacokinetic properties, but mice are useful in their relative sensitivity to the potential proinflammatory and hepatic effects of oligonucleotides. In monkeys, there was no impact on organ function at doses up to 30 mg/kg/week for 6 weeks. Minimal to slight proximal tubular epithelial cell degeneration and regeneration within the kidney was observed, which had no impact on renal function and showed reversibility at the end of the treatment-free period. Additionally, mild and transient activated partial thromboplastin time elevations and mild increases in complement Bb were observed at the higher doses by intravenous dosing only. In mice, the alterations at 70 mg/kg/week included spleen weight increase up to 1.4-fold relative to control, increases in alanine aminotransferase and aspartate aminotransferase up to 1.8-fold over control, interleukin-10 increases up to 3.7-fold, and monocyte chemoattractant protein-1 increase up to 1.9-fold over control. No significant clinical pathology or histopathology changes were seen in mice at 20 mg/kg/week or less. The toxicity profile of ISIS 481464 is consistent with effects observed with phosphorothioate ASOs containing 2'-O-methoxyethylribose modifications instead of cEt.
    Nucleic acid therapeutics. 06/2013; 23(3):213-27.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hereditary angioedema (HAE) is a rare disorder characterized by recurrent, acute, and painful episodes of swelling involving multiple tissues. Deficiency or malfunction of the serine protease inhibitor C1 esterase inhibitor (C1-INH) results in HAE types 1 and 2, respectively, whereas mutations in coagulation factor 12 (f12) have been associated with HAE type 3. C1-INH is the primary inhibitor of multiple plasma cascade pathways known to be altered in HAE patients, including the complement, fibrinolytic, coagulation, and kinin-kallikrein pathways. We have selectively inhibited several components of both the kinin-kallikrein system and the coagulation cascades with potent and selective antisense oligonucleotides (ASOs) to investigate their relative contributions to vascular permeability. We have also developed ASO inhibitors of C1-INH and characterized their effects on vascular permeability in mice as an inducible model of HAE. Our studies demonstrate that ASO-mediated reduction in C1-INH plasma levels results in increased vascular permeability and that inhibition of proteases of the kinin-kallikrein system, either f12 or prekallikrein (PKK) reverse the effects of C1-INH depletion with similar effects on both basal and angiotensin converting enzyme (ACE) inhibitor-induced permeability. In contrast, inhibition of coagulation factors 11 (f11) or 7 (f7) had no effect. These results suggest that the vascular defects observed in C1-INH deficiency are dependent on the kinin-kallikrein system proteases f12 and PKK, and not mediated through the coagulation pathways. In addition, our results highlight a novel therapeutic modality that can potentially be employed prophylactically to prevent attacks in HAE patients.
    Nucleic acid therapeutics. 04/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE: During coagulation, factor IX (FIX) is activated by 2 distinct mechanisms mediated by the active proteases of either FVIIa or FXIa. Both coagulation factors may contribute to thrombosis; FXI, however, plays only a limited role in the arrest of bleeding. Therefore, therapeutic targeting of FXI may produce an antithrombotic effect with relatively low hemostatic risk.Approach and Results-We have reported that reducing FXI levels with FXI antisense oligonucleotides produces antithrombotic activity in mice, and that administration of FXI antisense oligonucleotides to primates decreases circulating FXI levels and activity in a dose-dependent and time-dependent manner. Here, we evaluated the relationship between FXI plasma levels and thrombogenicity in an established baboon model of thrombosis and hemostasis. In previous studies with this model, antibody-induced inhibition of FXI produced potent antithrombotic effects. In the present article, antisense oligonucleotides-mediated reduction of FXI plasma levels by ≥50% resulted in a demonstrable and sustained antithrombotic effect without an increased risk of bleeding. CONCLUSIONS: These results indicate that reducing FXI levels using antisense oligonucleotides is a promising alternative to direct FXI inhibition, and that targeting FXI may be potentially safer than conventional antithrombotic therapies that can markedly impair primary hemostasis.
    Arteriosclerosis Thrombosis and Vascular Biology 04/2013; · 6.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: β-Thalassemia and HFE-related hemochromatosis are 2 of the most frequently inherited disorders worldwide. Both disorders are characterized by low levels of hepcidin (HAMP), the hormone that regulates iron absorption. As a consequence, patients affected by these disorders exhibit iron overload, which is the main cause of morbidity and mortality. HAMP expression is controlled by activation of the SMAD1,5,8/SMAD4 complex. TMPRSS6 is a serine protease that reduces SMAD activation and blocks HAMP expression. We identified second generation antisense oligonucleotides (ASOs) targeting mouse Tmprss6. ASO treatment in mice affected by hemochromatosis (Hfe-/-) significantly decreased serum iron, transferrin saturation and liver iron accumulation. Furthermore, ASO treatment of mice affected by β-thalassemia (HBBth3/+ mice, referred to hereafter as th3/+ mice) decreased the formation of insoluble membrane-bound globins, ROS, and apoptosis, and improved anemia. These animals also exhibited lower erythropoietin levels, a significant amelioration of ineffective erythropoiesis (IE) and splenomegaly, and an increase in total hemoglobin levels. These data suggest that ASOs targeting Tmprss6 could be beneficial in individuals with hemochromatosis, β-thalassemia, and related disorders.
    The Journal of clinical investigation 03/2013; · 15.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is a primary risk factor for multiple metabolic disorders. Many drugs for the treatment of obesity, which mainly act through CNS as appetite suppressants, have failed during development or been removed from the market due to unacceptable adverse effects. Thus, there are very few efficacious drugs available and remains a great unmet medical need for anti-obesity drugs that increase energy expenditure by acting on peripheral tissues without severe side effects. Here, we report a novel approach involving antisense inhibition of fibroblast growth factor receptor 4 (FGFR4) in peripheral tissues. Treatment of diet-induce obese (DIO) mice with FGFR4 antisense oligonucleotides (ASO) specifically reduced liver FGFR4 expression that not only resulted in decrease in body weight (BW) and adiposity in free-feeding conditions, but also lowered BW and adiposity under caloric restriction. In addition, combination treatment with FGFR4 ASO and rimonabant showed additive reduction in BW and adiposity. FGFR4 ASO treatment increased basal metabolic rate during free-feeding conditions and, more importantly, prevented adaptive decreases of metabolic rate induced by caloric restriction. The treatment increased fatty acid oxidation while decreased lipogenesis in both liver and fat. Mechanistic studies indicated that anti-obesity effect of FGFR4 ASO was mediated at least in part through an induction of plasma FGF15 level resulted from reduction of hepatic FGFR4 expression. The anti-obesity effect was accompanied by improvement in plasma glycemia, whole body insulin sensitivity, plasma lipid levels and liver steatosis. Therefore, FGFR4 could be a potential novel target and antisense reduction of hepatic FGFR4 expression could be an efficacious therapy as an adjunct to diet restriction or to an appetite suppressant for the treatment of obesity and related metabolic disorders.
    PLoS ONE 01/2013; 8(7):e66923. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transthyretin (TTR)-associated amyloidosis is a late-onset autosomal-dominant genetic disease. Over 100 amyloidogenic mutations have been identified in TTR which destabilize the TTR tetramer thereby inducing the formation of amyloid fibrils in tissues such as the heart and peripheral nerves. This disease mainly affects peripheral nerves, causing familial amyloid polyneuropathy (FAP) or heart, causing familial amyloid cardiomyopathy (FAC). Circulating TTR is predominantly produced by liver, and the only widely available clinical treatment for FAP is orthotopic liver transplantation (OLT), whereas no treatment currently exists for FAC. Using second-generation antisense technology, we identified an antisense oligonucleotide (ASO) targeting TTR, ISIS-TTR(Rx), for the treatment of TTR-associated amyloidosis. When tested in a human TTR transgenic mouse model (hTTR Ile84Ser), ISIS-TTR(Rx) showed a dose-dependent reduction of human TTR (up to >80%) at both the mRNA and protein levels. In cynomolgus monkeys, ISIS-TTR(Rx) treatment produced a time-dependent reduction in plasma TTR levels. After 12 weeks of treatment in monkey, liver TTR mRNA and plasma TTR protein levels were reduced by ~80%. As expected, treatment with ISIS-TTR(Rx) also produced a significant decrease in plasma RBP4 levels that correlated with reductions in TTR levels. ISIS-TTR(Rx) treatment was well tolerated in both rodents and monkeys and produced a PK/PD profile consistent with prior experiences using this chemistry platform. ISIS-TTR(Rx) is currently under evaluation in a Phase 1 clinical trial in normal healthy volunteers, and interim results of this trial will be presented.
    Amyloid: the international journal of experimental and clinical investigation: the official journal of the International Society of Amyloidosis 04/2012; 19 Suppl 1:43-4. · 2.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diacylglycerol acyltransferase (DGAT) catalyzes the final step in triglyceride (TG) synthesis. There are two isoforms, DGAT1 and DGAT2, with distinct protein sequences and potentially different physiological functions. To date, the ability to determine clear functional differences between DGAT1 and DGAT2, especially with respect to hepatic TG synthesis, has been elusive. To dissect the roles of these two key enzymes, we pretreated HepG2 hepatoma cells with (13)C(3)-D(5)-glycerol or (13)C(18)-oleic acid, and profiled the major isotope-labeled TG species by liquid chromatography tandem mass spectrometry. Selective DGAT1 and DGAT2 inhibitors demonstrated that (13)C(3)-D(5)-glycerol-incorporated TG synthesis was mediated by DGAT2, not DGAT1. Conversely, (13)C(18)-oleoyl-incorporated TG synthesis was predominantly mediated by DGAT1. To trace hepatic TG synthesis and VLDL triglyceride (VLDL-TG) secretion in vivo, we administered D(5)-glycerol to mice and measured plasma levels of D(5)-glycerol-incorporated TG. Treatment with an antisense oligonucleotide (ASO) to DGAT2 led to a significant reduction in D(5)-glycerol incorporation into VLDL-TG. In contrast, the DGAT2 ASO had no effect on the incorporation of exogenously administered (13)C(18)-oleic acid into VLDL-TG. Thus, our results indicate that DGAT1 and DGAT2 mediate distinct hepatic functions: DGAT2 is primarily responsible for incorporating endogenously synthesized FAs into TG, whereas DGAT1 plays a greater role in esterifying exogenous FAs to glycerol.
    The Journal of Lipid Research 04/2012; 53(6):1106-16. · 4.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A strategy to produce sufficient anticoagulant properties with reduced risk of bleeding may be possible through inhibition of factor XI (FXI), a component of the intrinsic coagulation cascade. The objective of this work was to determine the safety profile of ISIS 416858, a 2'-methoxyethoxy (2'-MOE) antisense oligonucleotide inhibitor of FXI, with focus on assessment of bleeding risk. Cynomolgus monkeys administered ISIS 416858 (4, 8, 12, and 40 mg/kg/wk, subcutaneous) for up to 13 weeks produced a dose-dependent reduction in FXI (mRNA in liver and plasma activity) and a concomitant increase in activated partial thromboplastin time (APTT). ISIS 416858 (20 or 40 mg/kg/wk) reduced plasma FXI activity by 80% at 4 weeks of treatment that resulted in a 33% increase in APTT by 13 weeks with no effects on PT, platelets, or increased bleeding following partial tail amputation or gum and skin laceration. The dose-dependent presence of basophilic granules in multiple tissues in ISIS 416858-treated animals was an expected histologic change for a 2'-MOE antisense oligonucleotide, and no toxicity was attributed to hepatic FXI reduction. Basophilic granules reflect cellular drug uptake and subsequent visualization on hematoxylin staining. These results suggest that ISIS 416858 has an acceptable preclinical safety profile and is a promising clinical candidate to treat thrombotic disease.
    Blood 03/2012; 119(10):2401-8. · 9.78 Impact Factor

Publication Stats

9k Citations
1,389.74 Total Impact Points

Institutions

  • 1990–2014
    • Isis Pharmaceuticals, Inc.
      Carlsbad, California, United States
  • 2011
    • Vancouver Prostate Centre
      Vancouver, British Columbia, Canada
  • 2010
    • Indiana University-Purdue University Indianapolis
      • Department of Pathology and Laboratory Medicine
      Indianapolis, IN, United States
  • 2009
    • Howard Hughes Medical Institute
      Ashburn, Virginia, United States
    • University of California, Davis
      • Department of Molecular Biosciences (VM)
      Davis, CA, United States
  • 2007–2009
    • Yale University
      • Department of Internal Medicine
      New Haven, CT, United States
  • 2003–2007
    • University of Texas Southwestern Medical Center
      • Department of Pharmacology
      Dallas, TX, United States
  • 1997–2007
    • Isis Pharmaceuticals, Inc.
      Carlsbad, California, United States
    • University of Colorado
      Denver, Colorado, United States
  • 2006
    • Medical University of Vienna
      • Universitätsklinik für Klinische Pharmakologie
      Vienna, Vienna, Austria
    • The University of Edinburgh
      • Edinburgh Cancer Research Centre
      Edinburgh, SCT, United Kingdom
  • 2004–2006
    • Albert Einstein College of Medicine
      • • Diabetes Research Center
      • • Department of Molecular Pharmacology
      New York City, NY, United States
    • Western General Hospital
      Edinburgh, Scotland, United Kingdom
  • 2005
    • University of British Columbia - Vancouver
      • Division of Neurology
      Vancouver, British Columbia, Canada
  • 2002–2005
    • University of Vienna
      Wien, Vienna, Austria
  • 2000
    • Vancouver General Hospital
      Vancouver, British Columbia, Canada
  • 1997–1998
    • University of Washington Seattle
      • • Department of Pathology
      • • Division of Cardiology
      Seattle, WA, United States
  • 1995
    • Emory University
      • Biochemistry
      Atlanta, GA, United States
  • 1992–1993
    • Molecular and Cellular Biology Program
      • Department of Molecular and Cellular Biology
      Seattle, Washington, United States
  • 1989
    • Hospital of the University of Pennsylvania
      • Department of Pharmacology
      Philadelphia, PA, United States
  • 1986
    • University of Pennsylvania
      • Department of Medicine
      Philadelphia, Pennsylvania, United States