Are you Atefeh Dehghan?

Claim your profile

Publications (3)48.93 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Common diseases are often complex because they are genetically heterogeneous, with many different genetic defects giving rise to clinically indistinguishable phenotypes. This has been amply documented for early-onset cognitive impairment, or intellectual disability, one of the most complex disorders known and a very important health care problem worldwide. More than 90 different gene defects have been identified for X-chromosome-linked intellectual disability alone, but research into the more frequent autosomal forms of intellectual disability is still in its infancy. To expedite the molecular elucidation of autosomal-recessive intellectual disability, we have now performed homozygosity mapping, exon enrichment and next-generation sequencing in 136 consanguineous families with autosomal-recessive intellectual disability from Iran and elsewhere. This study, the largest published so far, has revealed additional mutations in 23 genes previously implicated in intellectual disability or related neurological disorders, as well as single, probably disease-causing variants in 50 novel candidate genes. Proteins encoded by several of these genes interact directly with products of known intellectual disability genes, and many are involved in fundamental cellular processes such as transcription and translation, cell-cycle control, energy metabolism and fatty-acid synthesis, which seem to be pivotal for normal brain development and function.
    Nature 09/2011; 478(7367):57-63. · 38.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mental retardation (MR) has a worldwide prevalence of around 2% and is a frequent cause of severe disability. Significant excess of MR in the progeny of consanguineous matings as well as functional considerations suggest that autosomal recessive forms of MR (ARMR) must be relatively common. To shed more light on the causes of autosomal recessive MR (ARMR), we have set out in 2003 to perform systematic clinical studies and autozygosity mapping in large consanguineous Iranian families with non-syndromic ARMR (NS-ARMR). As previously reported (Najmabadi et al. in Hum Genet 121:43-48, 2007), this led us to the identification of 12 novel ARMR loci, 8 of which had a significant LOD score (OMIM: MRT5-12). In the meantime, we and others have found causative gene defects in two of these intervals. Moreover, as reported here, tripling the size of our cohort has enabled us to identify 27 additional unrelated families with NS-ARMR and single-linkage intervals; 14 of these define novel loci for non-syndromic ARMR. Altogether, 13 out of 39 single linkage intervals observed in our cohort were found to cluster at 6 different loci on chromosomes, i.e., 1p34, 4q27, 5p15, 9q34, 11p11-q13 and 19q13, respectively. Five of these clusters consist of two significantly overlapping linkage intervals, and on chr 1p34, three single linkage intervals coincide, including the previously described MRT12 locus. The probability for this distribution to be due to chance is only 1.14 × 10(-5), as shown by Monte Carlo simulation. Thus, in contrast to our previous conclusions, these novel data indicate that common molecular causes of NS-ARMR do exist, and in the Iranian population, the most frequent ones may well account for several percent of the patients. These findings will be instrumental in the identification of the underlying genes.
    Human Genetics 11/2010; 129(2):141-8. · 4.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Primary microcephaly (MCPH) is a genetically heterogeneous disorder showing an autosomal recessive mode of inheritance. Affected individuals present with head circumferences more than three SDs below the age- and sex-matched population mean, associated with mild to severe mental retardation. Five genes (MCPH1, CDK5RAP2, ASPM, CENPJ, STIL) and two genomic loci, MCPH2 and MCPH4, have been identified so far. In this study, we investigated all seven MCPH loci in patients with primary microcephaly from 112 Consanguineous Iranian families. In addition to a thorough clinical characterisation, karyotype analyses were performed for all patients. For Homozygosity mapping, microsatellite markers were selected for each locus and used for genotyping. Our investigation enabled us to detect homozygosity at MCPH1 (Microcephalin) in eight families, at MCPH5 (ASPM) in thirtheen families. Three families showed homozygosity at MCPH2 and five at MCPH6 (CENPJ), and two families were linked to MCPH7 (STIL). The remaining 81 families were not linked to any of the seven known loci. Subsequent sequencing revealed eight, 10 and one novel mutations in Microcephalin, ASPM and CENPJ, respectively. In some families, additional features such as short stature, seizures or congenital hearing loss were observed in the microcephalic patient, which widens the spectrum of clinical manifestations of mutations in known microcephaly genes. Our results show that the molecular basis of microcephaly is heterogeneous; thus, the Iranian population may provide a unique source for the identification of further genes underlying this disorder.
    Journal of Medical Genetics 10/2010; 47(12):823-8. · 5.70 Impact Factor