A Aviv

University of Pennsylvania, Philadelphia, Pennsylvania, United States

Are you A Aviv?

Claim your profile

Publications (207)1167.44 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: CXCL12 encodes stromal cell-derived factor 1 α (SDF-1), which binds to the receptor encoded by CXCR4. Variation at the CXCL12 locus is associated with coronary artery disease and endothelial progenitor cell numbers, whereas variation at the CXCR4 locus is associated with leukocyte telomere length, which has been shown to be associated with coronary artery disease. Therefore, we examined the relationships of plasma SDF-1 levels to cardiovascular disease (CVD)-related outcomes, risk factors, leukocyte telomere length, and endothelial progenitor cells.
    Arteriosclerosis Thrombosis and Vascular Biology 07/2014; · 6.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: In eutherian mammals and in humans, the female fetus may be masculinized while sharing the intra-uterine environment with a male fetus. Telomere length (TL), as expressed in leukocytes, is heritable and is longer in women than in men. The main determinant of leukocyte TL (LTL) is LTL at birth. However, LTL is modified by age dependent attrition. Methods: We studied LTL dynamics (LTL and its attrition) in adult same-sex(monozygotic, n=268; dizygotic, n=308) twins and opposite-sex (n=144) twins. LTL was measured by Southern blots of the terminal restriction fragments. Results: We observed that in same-sex (both monozygotic and dizygotic) twins, as reported in singletons, LTL was longer in females than in males [estimate ± standard error (SE):163 ± 63 bp, P<0.01]. However, in opposite-sex twins, female LTL was indistinguishable from that of males (-31 ± 52 bp, P=0.6), whereas male LTL was not affected. Findings were similar when the comparison was restricted to opposite-sex and same-sex dizygotic twins (females relative to males: same-sex: 188 ± 90 bp, P<0.05; other-sex: -32 ± 64 bp, P=0.6). Conclusions: These findings are compatible with masculinization of the female fetus in opposite-sex twins. They suggest that the sex difference in LTL, seen in the general population, is largely determined in utero, perhaps by the intrauterine hormonal environment. Further studies in newborn twins are warranted to test this thesis.
    International Journal of Epidemiology 07/2014; · 6.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Shortening of telomeres, the protective structures at the ends of eukaryotic chromosomes, is associated with age-related pathologies. Telomere length is influenced by DNA integrity and DNA and histone methylation. Folate plays a role in providing precursors for nucleotides and methyl groups for methylation reactions and has the potential to influence telomere length. We determined the association between leukocyte telomere length and long-term plasma folate status (mean of 4 years) in Framingham Offspring Study (n = 1,044, females = 52.1 %, mean age 59 years) using data from samples collected before and after folic acid fortification. Leukocyte telomere length was determined by Southern analysis and fasting plasma folate concentration using microbiological assay. There was no significant positive association between long-term plasma folate and leukocyte telomere length among the Framingham Offspring Study participants perhaps due to their adequate folate status. While the leukocyte telomere length in the second quintile of plasma folate was longer than that in the first quintile, the difference was not statistically significant. The leukocyte telomere length of the individuals in the fifth quintile of plasma folate was shorter than that of those in the second quintile by 180 bp (P < 0.01). There was a linear decrease in leukocyte telomere length with higher plasma folate concentrations in the upper four quintiles of plasma folate (P for trend = 0.001). Multivitamin use was associated with shorter telomeres in this cohort (P = 0.015). High plasma folate status possibly resulting from high folic acid intake may interfere with the role of folate in maintaining telomere integrity.
    European Journal of Nutrition 05/2014; · 3.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Telomeres play a key role in replicative ageing and undergo age-dependent attrition in vivo. Here, we report a novel method, TelSeq, to measure average telomere length from whole genome or exome shotgun sequence data. In 260 leukocyte samples, we show that TelSeq results correlate with Southern blot measurements of the mean length of terminal restriction fragments (mTRFs) and display age-dependent attrition comparably well as mTRFs.
    Nucleic Acids Research 03/2014; · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction. Fatigue is often present in older adults with no identified underlying cause. The accruing burden of oxidative stress and inflammation might be underlying factors of fatigue. We therefore hypothesized that leukocyte telomere length (LTL) is relatively short in older adults who experience fatigue. Materials and Methods. We assessed 439 older nondisabled Danish twins. LTL was measured using Southern blots of terminal restriction fragments. Fatigue was measured by the Mob-T Scale based on questions on whether the respondents felt fatigued after performing six mobility items. Results. LTL was significantly associated with fatigue (P = 0.023), showing an increase of 0.038 kb/fatigue score unit. Aging-related diseases and mental health did not explain the association, while lifestyle factors slightly attenuated the estimates. Conclusion. Our results support an association between LTL and fatigue. Further studies are required to confirm this finding and the link of LTL with oxidative stress/inflammation over the life course.
    Journal of aging research 01/2014; 2014:403253.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Telomere length is a marker of cellular aging that varies with the individual, is inherited, and is highly correlated across somatic cell types within persons. Interindividual variability of telomere length may partly explain differences in reproductive aging rates. We examined whether leukocyte telomere length was associated with menopausal age. We evaluated the relationship between leukocyte telomere length and age at natural menopause in 486 white women ≥65 years of age. We fit linear regression models adjusted for age, income, education, body mass index, physical activity, smoking, and alcohol intake. We repeated the analysis in women with surgical menopause. We also performed sensitivity analyses excluding women (1) with unilateral oophorectomy, (2) who were nulliparous, or (3) reporting menopausal age <40 years, among other exclusions. For every 1-kb increase in leukocyte telomere length, average age at natural menopause increased by 10.2 months (95% confidence interval = 1.3 to 19.0). There was no association among 179 women reporting surgical menopause. In all but one sensitivity analysis, the association between leukocyte telomere length and age at menopause became stronger. However, when excluding women with menopausal age <40 years, the association decreased to 7.5 months (-0.4 to 15.5). Women with the longest leukocyte telomere length underwent menopause 3 years later than those with the shortest leukocyte telomere length. If an artifact, an association would likely also have been observed in women with surgical menopause. If these results are replicated, leukocyte telomere length may prove to be a useful predictor of age at menopause.
    Epidemiology (Cambridge, Mass.) 11/2013; · 5.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Only a few studies, primarily limited to small samples, have examined the relationship between leukocyte telomere length (LTL) data generated by Southern blots, expressed in kilobases, versus quantitative PCR data, expressed in the telomere product/a single gene product (T/S). In the present study, we compared LTL data generated by the two methods in 681 elderly participants (50% African Americans, 50% of European origin, 49.2% women, mean age 73.7±2.9 years) in the Health Aging and Body Composition Study. The correlation between the data generated by the two methods was modest (R(2) = .27). Both methods captured the age effect on LTL and the longer LTL in women than in men. However, only the Southern blot method showed a significantly longer LTL in African Americans than in European decent individuals, which might be attributed to the larger measurement error of the quantitative PCR-based method than the Southern blots.
    The Journals of Gerontology Series A Biological Sciences and Medical Sciences 08/2013; · 4.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Allele-specific DNA methylation (ASM) is well studied in imprinted domains, but this type of epigenetic asymmetry is actually found more commonly at non-imprinted loci, where the ASM is dictated not by parent-of-origin but instead by the local haplotype. We identified loci with strong ASM in human tissues from methylation-sensitive SNP array data. Two index regions (bisulfite PCR amplicons), one between the C3orf27 and RPN1 genes in chromosome band 3q21 and the other near the VTRNA2-1 vault RNA in band 5q31, proved to be new examples of imprinted DMRs (maternal alleles methylated) while a third, between STEAP3 and C2orf76 in chromosome band 2q14, showed non-imprinted haplotype-dependent ASM. Using long-read bisulfite sequencing (bis-seq) in 8 human tissues we found that in all 3 domains the ASM is restricted to single differentially methylated regions (DMRs), each less than 2kb. The ASM in the C3orf27-RPN1 intergenic region was placenta-specific and associated with allele-specific expression of a long non-coding RNA. Strikingly, the discrete DMRs in all 3 regions overlap with binding sites for the insulator protein CTCF, which we found selectively bound to the unmethylated allele of the STEAP3-C2orf76 DMR. Methylation mapping in two additional genes with non-imprinted haplotype-dependent ASM, ELK3 and CYP2A7, showed that the CYP2A7 DMR also overlaps a CTCF site. Thus, two features of imprinted domains, highly localized DMRs and allele-specific insulator occupancy by CTCF, can also be found in chromosomal domains with non-imprinted ASM. Arguing for biological importance, our analysis of published whole genome bis-seq data from hES cells revealed multiple genome-wide association study (GWAS) peaks near CTCF binding sites with ASM.
    PLoS Genetics 08/2013; 9(8):e1003622. · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent longitudinal studies of age-dependent leukocyte telomere length (LTL) attrition have reported that variable proportions of individuals experience LTL lengthening. Often, LTL lengthening has been taken at face value, and authors have speculated about the biological causation of this finding. Based on empirical data and theoretical considerations, we show that regardless of the method used to measure telomere length (Southern blot or quantitative polymerase chain reaction-based methods), measurement error of telomere length and duration of follow-up explain almost entirely the absence of age-dependent LTL attrition in longitudinal studies. We find that LTL lengthening is far less frequent in studies with long follow-up periods and those that used a high-precision Southern blot method (as compared with quantitative polymerase chain reaction determination, which is associated with larger laboratory error). We conclude that the LTL lengthening observed in longitudinal studies is predominantly, if not entirely, an artifact of measurement error, which is exacerbated by short follow-up periods. We offer specific suggestions for design of longitudinal studies of LTL attrition to diminish this artifact.
    Nucleic Acids Research 05/2013; · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SHORT LEUKOCYTE TELOMERE LENGTH (LTL) IS ASSOCIATED WITH ATHEROSCLEROSIS IN ADULTS AND: diminished survival in the elderly. LTL dynamics are defined by LTL at birth, which is highly variable, and its age dependent attrition thereafter, which is rapid during the first 20 years of life. We examined whether age-dependent LTL attrition during adulthood can substantially affect individuals' LTL ranking (e.g., longer or shorter LTL) in relation to their peers. We measured LTL in samples donated 12 years apart on average by 1156 participants in four longitudinal studies. We observed correlations of 0.91-0.96 between baseline and follow-up LTLs. Ranking individuals by deciles revealed that 94.1% (95%, confidence intervals of 92.6-95.4%) showed no rank change or a 1 decile change over time. We conclude that in adults LTL is virtually anchored to a given rank with the passage of time. Accordingly, the links of LTL with atherosclerosis and longevity appear to be established early in life. It is unlikely that lifestyle and its modification during adulthood exert a major impact on LTL ranking. This article is protected by copyright. All rights reserved.
    Aging cell 04/2013; · 7.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Telomere shortening in somatic tissues largely reflects stem cell replication. Previous human studies of telomere attrition were predominantly conducted on leukocytes. However, findings in leukocytes cannot be generalized to other tissues. Here we measure telomere length in leukocytes, skeletal muscle, skin and subcutaneous fat of 87 adults (aged 19-77 years). Telomeres are longest in muscle and shortest in leukocytes, yet are strongly correlated between tissues. Notably, the rates of telomere shortening are similar in the four tissues. We infer from these findings that differences in telomere length between proliferative (blood and skin) and minimally proliferative tissues (muscle and fat) are established during early life, and that in adulthood, stem cells of the four tissues replicate at a similar rate.
    Nature Communications 03/2013; 4:1597. · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Limited data suggest that leukocytes of the elderly display ultra-short telomeres. It was reported that in some elderly persons leukocyte telomere length (LTL) shows age-dependent elongation. Using cross-sectional and longitudinal models, we characterized LTL dynamics in participants of the Longitudinal Study of Aging Danish Twins. We measured LTL by Southern blots of the terminal restriction fragment length (TRFL) in 476 individuals (73-94 years) in a cross-sectional evaluation and in a subset of this cohort comprising 80 individuals (73-81 years at baseline) who were followed-up for approximately 10 years. Based on the mean TRFL, we found that a) the average rate of LTL attrition was respectively, 27 bp/year (P < 0.001) and 31 bp/year (P < 0.001) for the cross-sectional and longitudinal evaluations, and b) mean TRFL was 180 bp (95 % CI 43, 320) longer in females than males (P < 0.010). For the TRFL distribution, which captures telomeres of all lengths in the DNA sample, we observed significant shifts with age toward shorter telomeres. Based on the measurement error of the TRFLs, we computed that in the longitudinal evaluation 10.6 % of individuals would manifest LTL elongation over 10 years, assuming a 340 bp attrition during this period. This was not significantly different from the empirical observation of 7.5 % of individuals showing LTL elongation. We conclude that accumulation of ultra-short telomeres in leukocytes of the elderly reflects a shift toward shorter telomeres in the entire telomere distribution. Measurement error is the probable explanation for LTL elongation in longitudinal studies.
    European Journal of Epidemiology 02/2013; · 5.12 Impact Factor
  • Source
    Abraham Aviv, Ezra Susser
    [Show abstract] [Hide abstract]
    ABSTRACT: What are the implications for population health of the demographic trend toward increasing paternal age at conception (PAC) in modern societies? We propose that the effects of older PAC are likely to be broad and harmful in some domains of health but beneficial in others. Harmful effects of older PAC have received the most attention. Thus, for example, older PAC is associated with an increased risk of offspring having rare conditions such as achondroplasia and Marfan syndrome, as well as with neurodevelopmental disorders such as autism. However, newly emerging evidence in the telomere field suggests potentially beneficial effects, since older PAC is associated with a longer leukocyte telomere length (LTL) in offspring, and a longer LTL is associated with a reduced risk of atherosclerosis and with increased survival in the elderly. Thus, older PAC may cumulatively increase resistance to atherosclerosis and lengthen lifespan in successive generations of modern humans. In this paper we: (i) introduce these novel findings; (ii) discuss potential explanations for the effect of older PAC on offspring LTL; (iii) draw implications for population health and for life course; (iv) put forth an evolutionary perspective as a context for the multigenerational effects of PAC; and (v) call for broad and intensive research to understand the mechanisms underlying the effects of PAC. We draw together work across a range of disciplines to offer an integrated perspective of this issue.
    International Journal of Epidemiology 02/2013; · 6.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leukocyte telomere length (LTL) is associated with a number of common age-related diseases and is a heritable trait. Previous genome wide association studies (GWAS) identified two loci on chromosomes 3q26.2 (TERC) and 10q24.33 (OBFC1) that are associated with the inter-individual LTL variation. We performed a meta-analysis of 9,190 individuals from six independent GWAS and validated our findings in 2,226 individuals from four additional studies. We confirmed previously reported associations with OBFC1 (rs9419958 P=9.1x10(-11)) and with the telomerase RNA component TERC (rs1317082, P=1.1x10(-8)). We also identified two novel genomic regions associated with LTL variation that map near a conserved telomere maintenance complex component 1 (CTC1; rs3027234, P=3.6 × 10(-8)) on chromosome17p13.1 and zinc finger protein 676 (ZNF676; rs412658, P=3.3 × 10(-8)) on 19p12. The minor allele of rs3027234 was associated with both shorter LTL and lower expression of CTC1. Our findings are consistent with the recent observations that point mutations in CTC1 cause short telomeres in both Arabidopsis and humans affected by a rare Mendelian syndrome. Overall our results provide novel insights into the genetic architecture of inter-individual LTL variation in the general population.
    Human Molecular Genetics 09/2012; · 7.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Telomere length (TL) dynamics in vivo are defined by TL and its age-dependent change, brought about by cell replication. Leukocyte TL (LTL), which reflects TL in hematopoietic stem cells (HSCs), becomes shorter with age. In contrast, sperm TL, which reflects TL in the male germ cells, becomes longer with age. Moreover, offspring of older fathers display longer LTL. Thus far, no study has examined LTL and sperm TL relations with age in the same individuals, nor considered their implications for the paternal age at conception (PAC) effect on offspring LTL. We report that in 135 men (mean age: 34.4 years; range: 18-68 years) on average, LTL became shorter by 19 bp/year (r = -0.3; P = 0.0004), while sperm TL became longer by 57 bp/year (r = 0.32; P = 0.0002). Based on previously reported replication rates of HSCs and male germ cells, we estimate that HSCs lose 26 bp per replication. However, male germ cells gain only 2.48 bp per replication. As TL is inherited in an allele-specific manner, the magnitude of the PAC effect on the offspring's LTL should be approximately half of age-dependent sperm-TL elongation. When we compared the PAC effect data from previous studies with sperm-TL data from this study, the result was consistent with this prediction. As older paternal age is largely a feature of contemporary humans, we suggest that there may be progressive elongation of TL in future generations. In this sense, germ cell TL dynamics could be driving the evolution of TL in modern humans and perhaps telomere-related diseases in the general population.
    Molecular Human Reproduction 07/2012; 18(11):517-22. · 4.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Insulin-like growth factor 1 (IGF-1) stimulates cell proliferation and is crucial for maintenance of somatic tissues. However, this effect is associated with the inhibition of FOXO transcription factors and downregulation of antioxidative enzymes. In this study, we compared the responses of primary dermal fibroblasts and human umbilical vein endothelial cells with IGF-1 treatment. We found that IGF-1 primarily downregulated enzymatic antioxidants in skin fibroblasts. However, human umbilical vein endothelial cells were protected from an IGF-1-mediated decrease in antioxidative capacity. Moreover, IGF-1 also activated endothelial nitric oxide synthase in human umbilical vein endothelial cells. These observations suggest a dichotomous role for IGF-1, which provides for growth and repair needs of the soma, while attenuating the effect of oxidative stress on the vasculature by activating endothelial nitric oxide synthase. This increases the production of nitric oxide, an antiproliferative and, under certain circumstances, an antioxidant agent. Findings could help clarify the role of IGF-1 in aging and longevity of lower organisms, short-lived mammals, and humans.
    The Journals of Gerontology Series A Biological Sciences and Medical Sciences 03/2012; 67(9):939-46. · 4.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leukocyte telomere length (LTL) is linked to cardiovascular disease (CVD); however, it is unclear if LTL has an etiologic role in CVD. To gain insight into the LTL and CVD relationship, a cohort study of CVD mortality and single nucleotide polymorphisms (SNPs) in OBFC1 and TERC, genes related to LTL, was conducted among 3271 Caucasian participants ages ≥65 years enrolled 1989-1990 in the Cardiovascular Health Study. Leukocyte DNA was genotyped for SNPs in OBFC1 (rs4387287 and rs9419958) and TERC (rs3772190) that were previously associated with LTL through genome-wide association studies. Cox regression was used to estimate adjusted hazard ratios (HRs) and 95% confidence intervals (CIs). The OBFC1 SNPs were in linkage disequilibrium (r(2)=0.99), and both SNPs were similarly associated with CVD mortality in women. For women, there was a decreased risk of CVD death associated with the minor allele (rs4387287), HR=0.7; 95% CI: 0.5-0.9 (CC vs. AC) and HR=0.5; 95% CI: 0.20-1.4 (CC vs. AA) (P-trend <0.01). For men there was no association, HR=1.0; 95% CI: 0.7-1.3 (CC vs. AC) and HR=1.7; 95% CI: 0.8-3.6 (CC vs. AA) (P-trend=0.64). These findings support the hypothesis that telomere biology and associated genes may play a role in CVD-related death, particularly among women.
    Mechanisms of ageing and development 03/2012; 133(5):275-81. · 4.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dietary energy restriction in mammals, particularly at a young age, extends the life span. Leukocyte telomere length (LTL) is thought to be a bioindicator of aging in humans. High n-6 (omega-6) PUFA intake may accelerate LTL attrition. We determined whether lower energy and higher PUFA intakes in young adulthood are associated with shorter LTL in cross-sectional and longitudinal analyses. In a longitudinal observational study (405 men, 204 women), diet was determined at baseline by a semiquantitative food-frequency questionnaire, and LTL was determined by Southern blots at mean ages of 30.1 y (baseline) and 43.2 y (follow-up). Spearman correlations and multivariable linear regression were used. Baseline energy intake was inversely associated with follow-up LTL in men (standardized β = -0.171, P = 0.0005) but not in women (P = 0.039 for sex interaction). The difference in men between the highest and lowest quintiles of energy was 244 base pairs (bp) (95% CI: 59, 429 bp) and between extreme quintiles of LTL was 440 kcal (95% CI: 180, 700 kcal). Multivariable adjustment modestly attenuated the association (β = -0.157, P = 0.002). Inverse associations, which were noted for all macronutrients, were strongest for the unsaturated fatty acids. In multivariable models including energy and the macronutrients (as percentage of energy), the significant inverse energy-LTL association (but not the PUFA-LTL association) persisted. The energy-LTL association was restricted to never smokers (standardized β = -0.259, P = 0.0008; P = 0.050 for the smoking × calorie interaction). The inverse calorie intake-LTL association is consistent with trial data showing beneficial effects of calorie restriction on aging biomarkers. Further exploration of energy intake and LTL dynamics in the young is needed.
    American Journal of Clinical Nutrition 02/2012; 95(2):479-87. · 6.50 Impact Factor
  • Abraham Aviv, Daniel Levy
    [Show abstract] [Hide abstract]
    ABSTRACT: The model we propose to explain the links between atherosclerosis and telomere dynamics (birth telomere length and its age-dependent shortening) in leukocytes takes cues from three facts: atherosclerosis is a disease of the vascular endothelium; the hematopoietic system and the vascular endothelium share a common embryonic origin; interindividual variation in leukocyte telomere length (LTL) in the general population has a genetic explanation. The model posits that LTL dynamics mirror telomere dynamics in hematopoietic stem cells (HSCs), where telomere length is an index of HSC reserves. Diminished HSC reserves at birth, their accelerated attrition rate afterward, or both are are reflected in shortened LTL during adulthood-a phenomenon that confers increased risk for atherosclerosis. We explain how telomere length in HSCs serves as both a biomarker of atherosclerosis and a determinant of its development. Our model comes down to this proposition: Shortened LTL predicts increased atherosclerotic risk because the injurious component of atherosclerosis exceeds the repair capacity of HSC reserves, which largely depend on HSC telomere length.
    Annual review of medicine 01/2012; 63:293-301. · 9.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Telomerase is of key importance for telomere maintenance, and variants of the genes encoding its major subunits, telomerase reverse transcriptase (TERT) and telomerase RNA component (TERC), are candidates for interindividual variation in telomere length. Recently, the two SNPs rs3772190 and rs12696304 in the TERC locus were reported to be associated with leukocyte telomere length (LTL) in two genome-wide association studies, while one haplotype of TERT (rs2853669, rs2736098, rs33954691, and rs2853691) has been reported to be associated with both LTL and longevity in a candidate gene study. In this study, we investigated the two TERC and four TERT SNPs in middle-aged, old, and oldest-old Danes (58-100 years) and their association with LTL (n = 864) and longevity (n = 1069). Furthermore, data on 11 TERT tagging SNPs in 1089 oldest-old and 736 middle-aged Danes were investigated with respect to longevity. For all SNPs, the association with longevity was investigated using both a cross-sectional and a longitudinal approach. Applying an additive model, we found association of LTL with the minor TERC alleles of rs3772190 (A) and rs12696304 (G), such that a shorter LTL was seen in rs3772190 A carriers (regression coefficient = -0.08, P = 0.011) and in male rs12696304 G carriers (regression coefficient = -0.13, P = 0.014). No TERT variations showed association. Moreover, the A allele of rs3772190 (TERC) was found to be associated with longevity [hazard rate (AG + AA) = 1.31, P = 0.006]. No associations with longevity were observed for the TERT SNPs or haplotypes. Our study, thus, indicates that TERC is associated with both LTL and longevity in humans.
    Aging cell 12/2011; 11(2):223-7. · 7.55 Impact Factor

Publication Stats

6k Citations
1,167.44 Total Impact Points


  • 2013
    • University of Pennsylvania
      Philadelphia, Pennsylvania, United States
    • New York State Psychiatric Institute
      New York City, New York, United States
    • Columbia University
      New York City, New York, United States
    • University of Southern Denmark
      • Institute of Public Health
      Kolding, South Denmark, Denmark
  • 1985–2013
    • Rutgers New Jersey Medical School
      • • Department of Surgery
      • • Department of Medicine (RWJ Medical School)
      • • Department of Preventive Medicine and Community Health
      • • Division of General Internal Medicine
      Newark, NJ, United States
  • 2012
    • Hebrew University of Jerusalem
      Yerushalayim, Jerusalem District, Israel
    • Fred Hutchinson Cancer Research Center
      • Prevention Center
      Seattle, Washington, United States
  • 2008–2012
    • University of Utah
      • • Department of Surgery
      • • Division of Cardiovascular Genetics
      Salt Lake City, UT, United States
  • 2006–2012
    • King's College London
      • Department of Twin Research and Genetic Epidemiology
      Londinium, England, United Kingdom
    • Centre Hospitalier Universitaire de Nancy
      Nancy, Lorraine, France
    • Boston University
      • Department of Biostatistics
      Boston, MA, United States
  • 2011
    • Louisiana State University Health Sciences Center New Orleans
      New Orleans, Louisiana, United States
    • University of Alabama at Birmingham
      Birmingham, Alabama, United States
  • 2007–2011
    • University of Washington Seattle
      • Department of Epidemiology
      Seattle, WA, United States
  • 2008–2010
    • National Heart, Lung, and Blood Institute
      • Division of Cardiovascular Sciences (DCVS)
      Maryland, United States
  • 2004–2010
    • University of Leuven
      Louvain, Flanders, Belgium
  • 2009
    • Tulane University
      • Tulane Center for Cardiovascular Health
      New Orleans, LA, United States
    • Albert Einstein College of Medicine
      • Department of Epidemiology & Population Health
      New York City, NY, United States
    • Karl Jaspers Society of North America
      United States
    • Leiden University Medical Centre
      • Department of Medical Microbiology
      Leiden, South Holland, Netherlands
    • Second University of Naples
      Caserta, Campania, Italy
  • 2001–2004
    • Centre D'Investigations Préventives Et Cliniques
      Lutetia Parisorum, Île-de-France, France
  • 2002
    • Case Western Reserve University
      • Department of Epidemiology and Biostatistics
      Cleveland, OH, United States
  • 1993
    • University of Rochester
      • School of Medicine and Dentistry
      Rochester, NY, United States
  • 1992
    • Tel Aviv University
      Tell Afif, Tel Aviv, Israel