Zhiqiang Wang

University of Illinois at Chicago, Chicago, Illinois, United States

Are you Zhiqiang Wang?

Claim your profile

Publications (6)23.69 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Properties of the NO-ASA family of NO-donating NSAIDs (NO-NSAIDs), notably NCX 4016 (mNO-ASA) and NCX 4040 (pNO-ASA), reported in more than one hundred publications, have included positive preclinical data in cancer chemoprevention and therapy. Evidence is presented that the antiproliferative, the chemopreventive (antioxidant/electrophile response element (ARE) activation), and the anti-inflammatory activity of NO-ASA in cell cultures is replicated by X-ASA derivatives that are incapable of acting as NO donors. pBr-ASA and mBr-ASA are conisogenic with NO-ASA, but are not NO donors. The biological activity of pNO-ASA is replicated by pBr-ASA; and both pNO-ASA and pBr-ASA are bioactivated to the same quinone methide electrophile. The biological activity of mNO-ASA is replicated by mBr-ASA; mNO-ASA and mBr-ASA are bioactivated to different benzyl electrophiles. The observed activity is likely initiated by trapping of thiol biomolecules by the quinone and benzyl electrophiles, leading to depletion of GSH and modification of Cys-containing sensor proteins. Whereas all NO-NSAIDs containing the same structural "linker" as NCX 4040 and NCX 4016 are anticipated to possess activity resulting from bioactivation to electrophilic metabolites, this expectation does not extend to other linker structures. Nitrates require metabolic bioactivation to liberate NO bioactivity, which is often poorly replicated in vitro, and NO bioactivity provided by NO-NSAIDs in vivo provides proven therapeutic benefits in mitigation of NSAID gastrotoxicity. The in vivo properties of X-ASA drugs await discovery.
    Nitric Oxide 10/2008; 19(2):115-24. DOI:10.1016/j.niox.2008.04.013 · 3.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nonsteroidal anti-inflammatory drugs (NSAIDs) have shown promise in colorectal cancer (CRC), but they are compromised by gastrotoxicity. NO-NSAIDs are hybrid nitrates conjugated to an NSAID designed to exploit the gastroprotective properties of NO bioactivity. The NO chimera ethyl 2-((2,3-bis(nitrooxy)propyl)disulfanyl)benzoate (GT-094), a novel nitrate containing an NSAID and disulfide pharmacophores, is effective in vivo in rat models of CRC and is a lead compound for design of agents of use in CRC. Preferred chemopreventive agents possess 1) antiproliferative and 2) anti-inflammatory actions and 3) the ability to induce cytoprotective phase 2 enzymes. To determine the contribution of each pharmacophore to the biological activity of GT-094, these three biological activities were studied in vitro in compounds that deconstructed the structural elements of the lead GT-094. The anti-inflammatory and antiproliferative actions of GT-094 in vivo were recapitulated in vitro, and GT-094 was seen to induce phase 2 enzymes via the antioxidant responsive element. In the variety of colon, macrophage-like, and liver cell lines studied, the evidence from structure-activity relationships was that the disulfide structural element of GT-094 is the dominant contributor in vitro to the anti-inflammatory activity, antiproliferation, and enzyme induction. The results provide a direction for lead compound refinement. The evidence for a contribution from the NO mimetic activity of nitrates in vitro was equivocal, and combinations of nitrates with acetylsalicylic acid were inactive.
    Molecular pharmacology 09/2008; 74(5):1381-91. DOI:10.1124/mol.108.046664 · 4.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cellular defense mechanisms that respond to damage from oxidative and electrophilic stress, such as from quinones, represent a target for chemopreventive agents. Drugs bioactivated to quinones have the potential to activate antioxidant/electrophile responsive element (ARE) transcription of genes for cytoprotective phase 2 enzymes such as NAD(P)H-dependent quinone oxidoreductase (NQO1) but can also cause cellular damage. Two isomeric families of compounds were prepared, including the NO-NSAIDs (NO-donating nonsteroidal anti-inflammatory drugs) NCX 4040 and NCX 4016; one family was postulated to release a quinone methide on esterase bioactivation. The study of reactivity and GSH conjugation in model and cell systems confirmed the postulate. The quinone-forming family, including NCX 4040 and conisogenic bromides and mesylate, was rapidly bioactivated to a quinone, which gave activation of ARE and consequent induction of NQO1 in liver cells. Although the control family, including NCX 4016 and conisogenic bromides and mesylates, cannot form a quinone, ARE activation and NQO1 induction were observed, compatible with slower SN2 reactions with thiol sensor proteins, and consequent ARE-luciferase and NQO1 induction. Using a Chemoprevention Index estimate, the quinone-forming compounds suffered because of high cytoxicity and were more compatible with cancer therapy than chemoprevention. In the Comet assay, NCX 4040 was highly genotoxic relative to NCX 4016. There was no evidence that NO contributes to the observed biological activity and no evidence that NCX 4040 is an NO donor, instead, rapidly releasing NO3- and quinone. These results indicate a strategy for studying the quinone biological activity and reinforce the therapeutic attributes of NO-ASA through structural elements other than NO and ASA.
    Chemical Research in Toxicology 01/2008; 20(12):1903-12. DOI:10.1021/tx7002257 · 4.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glutamate racemase (RacE) is responsible for converting l-glutamate to d-glutamate, which is an essential component of peptidoglycan biosynthesis, and the primary constituent of the poly-gamma-d-glutamate capsule of the pathogen Bacillus anthracis. RacE enzymes are essential for bacterial growth and lack a human homolog, making them attractive targets for the design and development of antibacterial therapeutics. We have cloned, expressed and purified the two glutamate racemase isozymes, RacE1 and RacE2, from the B. anthracis genome. Through a series of steady-state kinetic studies, and based upon the ability of both RacE1 and RacE2 to catalyze the rapid formation of d-glutamate, we have determined that RacE1 and RacE2 are bona fide isozymes. The X-ray structures of B. anthracis RacE1 and RacE2, in complex with d-glutamate, were determined to resolutions of 1.75 A and 2.0 A. Both enzymes are dimers with monomers arranged in a "tail-to-tail" orientation, similar to the B. subtilis RacE structure, but differing substantially from the Aquifex pyrophilus RacE structure. The differences in quaternary structures produce differences in the active sites of racemases among the various species, which has important implications for structure-based, inhibitor design efforts within this class of enzymes. We found a Val to Ala variance at the entrance of the active site between RacE1 and RacE2, which results in the active site entrance being less sterically hindered for RacE1. Using a series of inhibitors, we show that this variance results in differences in the inhibitory activity against the two isozymes and suggest a strategy for structure-based inhibitor design to obtain broad-spectrum inhibitors for glutamate racemases.
    Journal of Molecular Biology 09/2007; 371(5):1219-37. DOI:10.1016/j.jmb.2007.05.093 · 3.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have indicated that the most important role of beta-amyloid peptide (Abeta) in the etiology of Alzheimer's disease may not be in plaque formation but in the formation of soluble, metastable Abeta(1-42) neurotoxic intermediates (called ADDLs). In the present work we describe the preparation of per-6-amino-6-deoxy-beta-cyclodextrins, which inhibit ADDLs formation in vitro.
    Journal of Medicinal Chemistry 07/2004; 47(13):3329-33. DOI:10.1021/jm034224e · 5.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is a fatal, progressive dementia for which there is no cure and for which a molecular basis has yet to be established. However, considerable evidence suggests that AD is linked to neurotoxic assemblies of the 42-amino-acid peptide amyloid beta (Abeta). There is now a clear body of evidence that shows this neurotoxicity resides not only in insoluble fibrils of Abeta but also in soluble Abeta ADDLs (Abeta-derived diffusible ligands) and larger protofibrils. Further, anti-Abeta antibodies have been reported to reverse memory failure in human amyloid precursor protein (hAPP)-expressed transgenic mice in a manner that suggests symptom reversal is attributable to targeting of ADDLs. Clearly, a search for drugs targeting the assembly of these soluble Abeta species represents a new and potentially important approach to the treatment of AD. In this work we describe the development of a dot-blot immunoassay to measure ADDL at the femtomole level, its use in defining the time course of ADDL formation, and its use in determining the presence of ADDLs in the hAPP transgenic mouse brain. Discussion of a protocol to screen agents for inhibition of neurotoxic ADDLformation both in vivo and in vitro is also presented. The methods are suitable for screening combinatorial libraries and, importantly, provide the potential for simultaneous information on candidate transport across the blood-brain barrier.
    Journal of Molecular Neuroscience 02/2003; 20(3):305-13. DOI:10.1385/JMN:20:3:305 · 2.76 Impact Factor