Z.Y. Cui

University of Science and Technology, Beijing, Peping, Beijing, China

Are you Z.Y. Cui?

Claim your profile

Publications (38)83.1 Total impact

  • Source

    Nuclear Fusion 10/2015; 55(10):104021. DOI:10.1088/0029-5515/55/10/104021 · 3.06 Impact Factor
  • Z. Y. Cui · Z. Y. Liu · L. W. Wang · H. C. Ma · C. W. Du · X. G. Li · X. Wang ·
    [Show abstract] [Hide abstract]
    ABSTRACT: In this work, effects of pH value on the electrochemical and stress corrosion cracking (SCC) behavior of X70 pipeline steel in the dilute bicarbonate solutions were investigated using electrochemical measurements, slow strain rate tensile tests and surface analysis techniques. Decrease of the solution pH from 6.8 to 6.0 promotes the anodic dissolution and cathodic reduction simultaneously. Further decrease of the pH value mainly accelerates the cathodic reduction of X70 pipeline steel. As a result, when the solution pH decreases form 6.8 to 5.5, SCC susceptibility decreases because of the enhancement of the anodic dissolution. When the solution pH decreases from 5.5 to 4.0, SCC susceptibility increases gradually because of the acceleration of cathodic reactions.
    Journal of Materials Engineering and Performance 09/2015; 24(11). DOI:10.1007/s11665-015-1697-5 · 1.00 Impact Factor
  • Z. Y. Cui · X. G. Li · K. Xiao · C. F. Dong · Z. Y. Liu · D. W. Zhang ·
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, atmospheric corrosion behaviour of pure Al 1060 after 1-48 months of exposure in a tropical marine environment was studied. The corrosion kinetics was evaluated by weight loss measurement and pit depth calculation. The rate controlling steps as well as the effect of the native oxide film and the corrosion product layer on the corrosion process were analysed via electrochemical impendence spectroscopy. The results showed that synergetic effect of the deposition rate of chloride ions and time of wetness resulted in an abnormal increase in weight loss and an obvious fluctuation in corrosion rate. During the initial exposure period, corrosion was controlled by charge transfer process attributed to the limited corrosion area. With the increasing exposure duration, the rate controlling step was changed to diffusion due to the barrier effect of the corrosion products. Simultaneously, initiation of the new corrosion areas and the growth of the stable pits dominated the corrosion process during this period, resulting in a lower charge transfer resistance, a larger pit depth and a bigger corrosion area.
    Corrosion Engineering Science and Technology 09/2015; 50(6):438-448. DOI:10.1179/1743278214Y.0000000241 · 0.83 Impact Factor
  • W.L. Zhong · Z.B. Shi · Y. Xu · X.L. Zou · X.R. Duan · W. Chen · M. Jiang · Z.C. Yang · B.Y. Zhang · P.W. Shi · [...] · R. Ke · L. Nie · Z.Y. Cui · B.Z. Fu · X.T. Ding · J.Q. Dong · Yi Liu · L.W. Yan · Q.W. Yang · Y. Liu ·
    [Show abstract] [Hide abstract]
    ABSTRACT: The oscillations of poloidal plasma flows induced by radially sheared zonal flows are investigated by newly developed correlation Doppler reflectometers in the HL-2A tokamak. The non-disturbing diagnostic allows one to routinely measure the rotation velocity of turbulence, and hence the radial electric field fluctuations. With correlation Doppler reflectometers, a three-dimensional spatial structure of geodesic acoustic mode (GAM) is surveyed, including the symmetric feature of poloidal and toroidal Er fluctuations, the dependence of GAM frequency on radial temperature and the radial propagation of GAMs. The co-existence of low-frequency zonal flow and GAM is presented. The temporal behaviors of GAM during ramp-up experiments of plasma current and electron density are studied, which reveal the underlying damping mechanisms for the GAM oscillation level.
    Nuclear Fusion 09/2015; 55(11):113005. DOI:10.1088/0029-5515/55/11/113005 · 3.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Impurity transport in the scrape-off layer (SOL) has been studied in ohmically heated discharges of the HL-2A tokamak based on space-resolved vacuum ultraviolet spectroscopy. The vertical profile (from the plasma center to the lower X-point) of carbon emissions of CIII (977 Å: 2s2 1S0-2s2p ) and CIV (1548 Å: 2s 2S-2p 2P) as well as the ratio of CIV to CIII were measured to investigate the edge impurity transport with relation to impurity source locations and sputtering characteristics. The experimental result shows that the impurity profile in the SOL has been clearly changed against different source locations. The emission of CIII and CIV from the mid-plane is stronger than that from the X-point when the impurity source is located at the divertor plate. The profile becomes flat as a result. When the impurity source changes to the dome source, the profile clearly changes to a slightly peaked one, indicating the edge carbon emission at the X-point is stronger than the mid-plane. The change to the limiter source makes the profile further peaked by increasing the carbon emission at the X-point. In the case of the dome impurity source, the intensity of CIII/ne and CIV/ne, normalized to line-averaged electron density, ne, decreases with ne at low ne (ne 2.6 × 1019 m-3) and becomes saturated at high ne (ne > 2.6 × 1019 m-3). In contrast, the ratio of CIV to CIII increases with ne at low ne and starts to decrease at high ne. A numerical simulation with 3D edge plasma transport code, EMC3-EIRENE, suggests that a poloidal asymmetry in the impurity flow profile and an enhanced physical sputtering play an important role in the edge impurity distribution, particularly in the screening efficiency of C2+ and C3+ ions in the SOL region of the HL-2A tokamak.
    Nuclear Fusion 09/2015; 55(9):093034. DOI:10.1088/0029-5515/55/9/093034 · 3.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper overviews recent progress on the experimental identification and physics interpretation of 3D effects of magnetic field geometry on divertor transport. The 3D effects are elucidated as a consequence of competition between transports parallel (||) and perpendicular (⊥) to magnetic field, in open field lines cut by divertor plates, or in magnetic islands. The competition has strong impacts on divertor functions, such as determination of density regime, impurity screening, and detachment control. The effects of magnetic perturbation on the edge electric field and turbulent transport are also discussed. Based on the experiments and numerical simulations, key parameters governing the 3D transport physics for the individual divertor functions, e.g. pumping efficiency through divertor density regime, impurity screening and detachment control, are discussed.
    Journal of Nuclear Materials 08/2015; 463. DOI:10.1016/j.jnucmat.2015.01.011 · 1.87 Impact Factor
  • H.C. Ma · Z.Y. Liu · C.W. Du · H.R. Wang · X.G. Li · D.W. Zhang · Z.Y. Cui ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Stress corrosion cracking (SCC) behavior and mechanism of E690 welded joint in simulated marine atmosphere containing SO2 were investigated using SSRT method and electrochemical measurements. Results showed that it had very high SCC susceptibility in this environment with a combined mechanism of anodic dissolution and hydrogen embrittlement (HE). The intercritical heat affected zone in the welded joint was the most vulnerable location to SCC because this zone has less strength, more negative potential, and higher corrosion current density. The M-A constituents had a detrimental effect on SCC behavior in the synergetic effect of stress concentration, micro-galvanic corrosion, and HE.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Two-dimensional (2-D) distribution of impurity line emissions has been measured with 2-D extreme ultraviolet (EUV) spectroscopy in Large Helical Device (LHD) for studying the edge impurity transport in stochastic magnetic field layer with three-dimensional (3-D) structure. The impurity behavior in the vicinity of two X-points at inboard and outboard sides of the toroidal plasma can be separately examined with the 2-D measurement. As a result, it is found that the carbon location changes from inboard to outboard X-points when the plasma axis is shifted from Rax = 3.6 m to 3.75 m. A 3-D simulation with EMC3-EIRENE code agrees with the result at Rax = 3.75 m but disagreed with the result at Rax = 3.60 m. The discrepancy between the measurement and simulation at Rax = 3.60 m is considerably reduced when an effect of neutral hydrogen localized in the inboard side is taken into account, which can modify the density gradient and friction force along the magnetic field.
  • Z. Y. Cui · L. W. Wang · Z. Y. Liu · C. W. Du · X. G. Li ·

    Corrosion Engineering Science and Technology 05/2015; 50(3):248-255. DOI:10.1179/1743278215Y.0000000018 · 0.83 Impact Factor
  • Z. Y. Cui · X. G. Li · K. Xiao · C. F. Dong · L. W. Wang · D. W. Zhang · Z. Y. Liu ·
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, corrosion behavior of 2B06 aluminum alloy was investigated after exposure to a tropical marine atmosphere for up to 4 years. After 6 months, the specimen showed exfoliation corrosion as well as rapid increase in thickness loss and corrosion rate. Exfoliation corrosion was found to initiate from hydrogen-assisted intergranular cracks and propagate extensively due to the wedge effect of the corrosion products. During the exposure test, corrosion on the groundward surface was considerably more severe than that on the skyward surface, which could be attributed to the different exposure conditions on the two surfaces.
    Journal of Materials Engineering and Performance 01/2015; 24(1). DOI:10.1007/s11665-014-1258-3 · 1.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In recent experiments at the HL-2A tokamak, dynamic features across the low─intermediate─high (L─I─H) confinement transition have been investigated in detail. Experimental evidence shows two types of opposite limit cycles (dubbed type-Y and type-J) between the radial electric field (Er) and turbulence evolution during the intermediate I-phase. Whereas for type-Y the turbulence grows prior to the change in Er, for type-J the oscillation in Er leads turbulence. It has been found that the type-Y usually appears first after an L─I transition, followed by type-J before the transition to the H-mode phase. Possible roles played by zonal flows and the enhanced pressure-gradient-induced flow shear in suppressing turbulence, respectively, in the type-Y and type-J periods have been identified. In addition, during the I-phase of the L─I─H discharges a kink-type MHD mode routinely occurs and crashes rapidly just prior to the I → H transition. The mode crash evokes substantial energy release from the core to plasma boundary and further increases the edge pressure gradient and Er shear, which eventually results in confinement improvement into the H-mode.
    Plasma Physics and Controlled Fusion 12/2014; 57(1). DOI:10.1088/0741-3335/57/1/014028 · 2.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Two groups of frequency sweeping modes are observed and interpreted in the HL-2 A plasmas with q min ∼ 1. The tokamak simulation code calculations indicate the presence of a reversed shear q-profile during the existence of these modes. The mode frequencies lie in between TAE and BAE frequencies, i.e. ω BAE ω ω TAE, and these modes are highly localized near q min, i.e. r/a ∼ 0.25. A group of modes characterized by down-sweeping frequency with q min decrease due to q min > 1 and nq min − m > 0, and another group of modes characterized by up-sweeping frequency with q min drop, owing to q min nq min − m q-profile measurements.
    Nuclear Fusion 10/2014; 54(10). DOI:10.1088/0029-5515/54/10/104002 · 3.06 Impact Factor
  • L.W. Wang · X.H. Wang · Z.Y. Cui · Z.Y. Liu · C.W. Du · X.G. Li ·
    [Show abstract] [Hide abstract]
    ABSTRACT: AC corrosion of the X80 and X100 steels in 0.1 M NaCl solution were studied by the AC voltammetry technique. Corrosion electrochemical kinetics and solid/solution interface structure changes under the influence of AC voltage were characterized. Results illustrate that corrosion potential of the two steels shift negatively with the increase of AC amplitude and decrease of AC frequency. The anodic processes are under charge-transfer control and the anodic Tafel slopes increase with the increase of AC magnitude. The cathodic processes are under diffusion control at low AC amplitudes, while they become increasingly under charge-transfer control with higher AC amplitudes.
    Corrosion Science 09/2014; 86:213–222. DOI:10.1016/j.corsci.2014.05.012 · 4.42 Impact Factor
  • L.W. Wang · Z.Y. Liu · Z.Y. Cui · C.W. Du · X.H. Wang · X.G. Li ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Subject to Gleeble processing, microstructures of weld heat affected zone were simulated in X80 steel. Corrosion behavior of the simulated specimen with a microstructure gradient was studied by polarization, local electrochemical impedance spectroscopy and scanning vibrating electrode technique. Microstructure of granular bainite mixed with ferrite (region B) showed the highest charge transfer resistance and the most positive current density value. Acicular ferrite base metal displayed the lowest charge transfer resistance and the most negative current density. Both the positive and negative peak current densities increased at the first few hours of immersion followed by a decrease.
    Corrosion Science 08/2014; 85:401–410. DOI:10.1016/j.corsci.2014.04.053 · 4.42 Impact Factor
  • Z. Y. Cui · X. G. Li · K. Xiao · C. F. Dong · Z. Y. Liu · L. W. Wang ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Corrosion behaviour of AZ31 magnesium during the initial six exposure periods in a tropical marine atmosphere is investigated. The results reveal that corrosion process of magnesium is dominated by pitting corrosion which consists of initiation of new pits, propagation of small scale pits and coalescence of neighbouring pits. There exists a critical depth above which the pits cease to grow down, resulting in the fluctuation of the mean pit depth. Different exposure conditions are found to be crucial for the different pit characters. Pits on the skyward surface are in deep-hole shape, while the groundward surface is covered with shallow dish pits.
    Corrosion Engineering Science and Technology 08/2014; 49(5):363-371. DOI:10.1179/1743278213Y.0000000147 · 0.83 Impact Factor
  • J.M. Gao · Y. Liu · W. Li · Z.Y. Cui · Y.B. Dong · J. Lu · Z.W. Xia · P. Yi · Q.W. Yang ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Linear regularization has been applied to the HL-2A infrared imaging bolometer to reconstruct local plasma emission with one-dimensional (1D) and three-dimensional (3D) modeling under the assumption of toroidal symmetry. In the 3D modeling, a new method to calculate the detector point response function is introduced. This method can be adapted to an arbitrarily shaped pinhole. With the full 3D treatment of the detector geometry, up to 50% of the mean-squared error is reduced compared with the 1D modeling. This is attributed to the effects of finite detector size being taken into account in the 3D modeling. Meanwhile, the number of the bolometer pixels has been optimized to 20 × 20 by making a trade-off between the number of bolometer pixels and the sensitivity of the system. The plasma radiated power density distributions have been calculated as a demonstration using 1D modeling and 3D modeling, respectively.
    Review of Scientific Instruments 04/2014; 85(4):043505-043505-6. DOI:10.1063/1.4870408 · 1.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The frequency modulated continuous wave reflectometer was developed for the first time on the HL-2A tokamak. The system utilizes a voltage controlled oscillator and an active multiplier for broadband coverage and detects as heterodyne mode. Three reflectometers have been installed and operated in extraordinary mode polarization on HL-2A to measure density profiles at low field side, covering the Q-band (33-50 GHz), V-band (50-75 GHz), and W-band (75-110 GHz). For density profile reconstruction from the phase shift of the probing wave, a corrected phase unwrapping method is introduced in this article. The effectiveness of the method is demonstrated. The density profile behavior of a fast plasma event is presented and it demonstrates the capability of the reflectometer. These diagnostics will be contributed to the routine density profile measurements and the plasma physics study on HL-2A.
    The Review of scientific instruments 02/2014; 85(1):013507. DOI:10.1063/1.4861918 · 1.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Geodesic acoustic mode (GAM) and low-frequency zonal flow (LFZF) are both observed through Langmuir probe arrays during electron cyclotron resonance heating (ECRH) on the HL-2A tokamak edge. The radial distributions of the amplitude and peak frequency of GAM in floating potential fluctuations are investigated through rake probe arrays under different ECRH powers. It is observed that the GAM frequency would decrease and the intensity of carbon line emission would increase as the ECRH power exceeds a certain threshold. The analyses suggest that the impurity ions may play an important role in the GAM frequency at the edge region. It is also found that during the ECRH phase besides the mean flow, both GAM and LFZF are strengthened. The total fluctuation power and the fraction of that power associated with zonal flows both increase with the ECRH power, consistent with a predator-prey model. The auto- and cross-bicoherence analyses show the coupling between GAM and its second harmonic during the ECRH phase. Moreover, the results also suggest that the couplings between GAM and the components with multiple GAM frequency are strengthened. These couplings may be important for GAM saturation during the ECRH phase.
    Nuclear Fusion 12/2013; 53(12):3006-. DOI:10.1088/0029-5515/53/12/123006 · 3.06 Impact Factor
  • M Jiang · Z B Shi · S Che · C W Domier · N C Luhmann · X Hu · A Spear · Z T Liu · X T Ding · J Li · W L Zhong · W Chen · Y L Che · B Z Fu · Z Y Cui · P Sun · Y Liu · Q W Yang · X R Duan ·
    [Show abstract] [Hide abstract]
    ABSTRACT: A 2D electron cyclotron emission imaging (ECEI) system has been developed for measurement of electron temperature fluctuations in the HL-2A tokamak. It is comprised of a front-end 24 channel heterodyne imaging array with a tunable RF range spanning 75-110 GHz, and a set of back-end ECEI electronics that together generate 24 × 8 = 192 channel images of the 2nd harmonic X-mode electron cyclotron emission from the HL-2A plasma. The simulated performance of the local oscillator (LO) optics and radio frequency (RF) optics is presented, together with the laboratory characterization results. The Gaussian beams from the LO optics are observed to properly cover the entire detector array. The ECE signals from the plasma are mixed with the LO signal in the array box, then delivered to the electronics system by low-loss microwave cables, and finally to the digitizers. The ECEI system can achieve temporal resolutions of ∼μs, and spatial resolutions of 1 cm (radially) and 2 cm (poloidally).
    The Review of scientific instruments 11/2013; 84(11):113501. DOI:10.1063/1.4828671 · 1.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: For the first time supersonic molecular beam injection (SMBI) and cluster jet injection (CJI) were applied to mitigate edge-localized modes (ELMs) in HL-2A successfully. The ELM frequency increased by a factor of 2-3 and the heat flux on the divertor target plates decreased by 50% on average after SMBI or CJI. Energetic particle induced modes were observed in different frequency ranges with high-power electron cyclotron resonance heating (ECRH). The high frequency (200-350 kHz) of the modes with a relatively small amplitude was close to the gap frequency of the toroidicity-induced Alfven eigenmode. The coexistent multi-mode magnetic structures in the high-temperature and low-collision plasma could affect the plasma transport dramatically. Long-lived saturated ideal magnetohydrodynamic instabilities during strong neutral beam injection heating could be suppressed by high-power ECRH. The absolute rate of nonlinear energy transfer between turbulence and zonal flows was measured and the secondary mode competition between low-frequency (LF) zonal flows (ZFs) and geodesic acoustic modes (GAMs) was identified, which demonstrated that ZFs played an important role in the L-H transition. The spontaneously generated E x B shear flow was identified to be responsible for the generation of a large-scale coherent structure (LSCS), which provided unambiguous experimental evidence for the LSCS generation mechanism. New meso-scale electric potential fluctuations (MSEFs) at frequency f similar to 10.5 kHz with two components of n = 0 and m/n = 6/2 were also identified in the edge plasmas for the first time. The MSEFs coexisted and interacted with magnetic islands of m/n = 6/2, turbulence and LF ZFs.
    Nuclear Fusion 10/2013; 53(10). DOI:10.1088/0029-5515/53/10/104009 · 3.06 Impact Factor