Zhong-Dang Xiao

Southeast University (China), Nan-ching-hsü, Jiangxi Sheng, China

Are you Zhong-Dang Xiao?

Claim your profile

Publications (9)27.68 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Exosomes are nanoscale membrane vesicles secreted from many types of cells. Carrying functional molecules, exosomes transfer information between cells and mediate many physiological and pathological processes. In this paper, utilizing selective inhibitors, molecular tools, and specific endocytosis markers, the cellular uptake of PC12 cell-derived exosomes was imaged by high-throughput microscopy and statistically analyzed. It was found that the uptake was through clathrin-mediated endocytosis and macropinocytosis. Furthermore, PC12 cell-derived exosomes can enter and delivery microRNAs (miRNAs) into bone marrow-derived mesenchymal stromal cells (BMSCs), and decrease the expression level of transforming growth factor β receptor II (TGFβRII) and tropomyosin-1 (TPM1) through miR-21. The results dissect the pathway of exosome internalization and demonstrated that tumor cell-derived exosomes regulate target gene expression in normal cells.
    The Journal of biological chemistry. 06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) regulate many biological processes by post-translational gene silencing. Analysis of miRNA expression profiles is a reliable method for investigating particular biological processes due to the stability of miRNA and the development of advanced sequencing methods. However, this approach is limited by the broad specificity of miRNAs, which may target several mRNAs.Result: In this study, we developed a method for comprehensive annotation of miRNA array or deep sequencing data for investigation of cellular biological effects. Using this method, the specific pathways and biological processes involved in Alzheimer's disease were predicted with high correlation in four independent samples. Furthermore, this method was validated for evaluation of cadmium telluride (CdTe) nanomaterial cytotoxicity. As a result, apoptosis pathways were selected as the top pathways associated with CdTe nanoparticle exposure, which is consistent with previous studies. Our findings contribute to the validation of miRNA microarray or deep sequencing results for early diagnosis of disease and evaluation of the biological safety of new materials and drugs.
    BMC Genetics 12/2013; 14(1):120. · 2.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Among a variety of polymers, poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a microbial polyester, with biodegradable, nonantigenic, and biocompatible properties, is attracting more and more attention in tissue engineering. Hydroxyapatite (HA), similar to the mineral component of natural bone, is known to be osteoconductive, nontoxic, and noninflammatory. In this study, aligned and random-oriented PHBV nanofibrous scaffolds loaded with HA nanoparticles were fabricated through electrospinning technique. Mesenchymal stem cells (MSCs) derived from rat bone marrow were used to investigate the effects of HA and orientation of fibers on cell proliferation and differentiation in vitro. Cell proliferation tested with CCK-8 assay indicated that the MSCs attached and proliferated more favorably on random-oriented PHBV nanofibrous meshes without HA. After one, two and four weeks of cell seeding, osteogenic markers including alkaline phosphate (ALP), osteocalcin (OCN), and mineralized matrix deposits were detected, respectively. The results indicated that the introduction of HA could induce MSCs to differentiate into osteoblasts. Moreover, 3D PHBV/HA scaffolds made from aligned and random-oriented nanofibers were implanted into critical-sized rabbit radius defects and exhibited significant effects on the repair of critical bone defects, implying their promising applications in bone tissue engineering.
    ACS Applied Materials & Interfaces 05/2013; · 5.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cells release exosomes into extracellular medium. Although the important roles of exosomes in many physiological and pathological processes are being revealed, the mechanism of exosome-cell interaction remains unclear. In this paper, employing real-time fluorescence microscopy, the motion of exosomes on the plasma membrane or in the cytoplasm of recipient PC12 cells was observed directly. In addition, several motion modes of exosomes were revealed by single particle tracking (SPT). The changes between motion modes were also detected, presenting the dynamic courses of exosome attachment onto plasma membrane and exosome uptake. Octadecyl rhodamine B chloride (R18) was found to be useful to distinguish endocytosis from fusion during exosome uptake. Colocalization with organelle markers showed exosomes were sorted to acidic vesicles after internalization. The results provide new sight into the exosome-cell interaction mode and the intercellular trafficking of exosomes. This study will help to understand the roles of exosomes at cell level. J. Cell. Physiol. © 2012 Wiley Periodicals, Inc.
    Journal of Cellular Physiology 12/2012; · 4.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microenvironments in which cells live play an important role in the attachment, growth and interactions of cells. To mimic the natural structure of extracellular matrices, electrospinning was applied to fabricate biomaterials into ultrafine fibers. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a biocompatible and biodegradable polyester, has been shown to be an excellent biomaterial candidate for tissue engineering. In this study, five types of PHBV fibrous scaffolds with different diameters and orientations were obtained by changing solvents, concentration of electrospun solution and collector. Three kinds of scaffolds with good continuity and suitable mechanical properties, selected according to the morphology and mechanical properties of the scaffolds, were used for studying the influence of fiber diameter and orientation on growth behavior of bone-marrow-derived mesenchymal stem cells (MSCs). The results indicated that the random-oriented nanofibrous scaffold is most favorable for cell growth compared to other scaffolds, while the microfibrous scaffold resulted in the lowest viability of MSCs. The orientation of nanofibers showed a distinct effect on cell morphology by guiding cell skeleton extension. Both the random-oriented and aligned PHBV nanofibrous scaffolds showed to be good candidates for applications in tissue engineering.
    Biomedical Materials 02/2012; 7(1):015002. · 2.92 Impact Factor
  • Source
    Bo Sun, Rui Liu, Zhong-Dang Xiao, Xuan Zhu
    [Show abstract] [Hide abstract]
    ABSTRACT: Sodium butyrate (NaBu) is regarded as a potential reagent for cancer therapy. In this study, a specific breast cancer cell population that is resistant NaBu treatment was identified. These cells possess cancer stem cell characters, such as the capability of sphere formation in vitro and high tumor incident rate (85%) in mouse model. Forty percent of the NaBu resistant cells express the cancer stem cells marker, the CD133, whereas only 10% intact cells present the CD133 antigen. Furthermore, the endogenous expressing c-MET contributes to the survival of cancer stem cell population from the treatment of NaBu. The CD133+ group also presents a higher level of c-MET. A combination treatment of MET siRNA and NaBu efficiently prohibited the breast cancer progression, and the incident rate of the tumor decrease to 18%. This study may help to develop a new and alternative strategy for breast cancer therapy.
    PLoS ONE 01/2012; 7(1):e30143. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a biodegradable polyester, has been a good candidate of biomaterial employed in tissue engineering. However, the PHBV film is hydrophobic and has no recognition sites for cell attachment. In this study, PHBV films are activated by ammonia plasma treatment to produce amino groups on the surface, followed by sequential reactions with a heterobifunctional cross-linker containing a segment of poly(ethylene glycol) (PEG) and further with RGD-containing peptides. XPS analyses of modified surfaces after each reaction step reveal that the RGD-containing peptides have been covalently grafted onto PHBV films. The result of cell viability assay indicates that the RGD-modified PHBV films exhibit a distinctly improved cellular compatibility. Moreover, according to the results of serum adsorption tests by optical waveguide lightmode spectroscopy (OWLS) and fibrinogen adsorption tests by enzyme-linked immunosorbent assay (ELISA) on unmodified and modified PHBV surfaces, the introduced PEG chains can significantly decrease the nonspecific adsorption of proteins from serum and fibrinogen from plasma, thus decreasing the risk of thrombus formation and improving the blood compatibility of implanted materials.
    Biomacromolecules 02/2011; 12(3):551-9. · 5.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As a non-invasive technique applied for the functional mapping of human brain, Magnetoencephalography (MEG) can acquire the neural activity with high temporal resolution and moderate spatial resolution. However, when reading a MEG record, for research or clinical reference, the investigator face the signals from non-cerebral sources like eye movements, heart beat and muscle activity always appear mixed with brain signals. In this article, we proposed a procedure including the independent component analysis(ICA) followed by an automatic independent component(IC) detection module mainly based on the analysis of statistical and spectral characteristics of each IC to remove the artifacts from MEG signals. The whole process was tested with both simulated data and real MEG signal, the results showed that the proposed technique was able to differentiate artfactual ICs successfully.
    4th International Conference on Biomedical Engineering and Informatics, BMEI 2011, Shanghai, China, October 15-17, 2011; 01/2011
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aligned and randomly oriented chitosan nanofibers were prepared by electrospinning. The fibers were modified with the RGD cell-adhesive peptide through a heterobifunctional crosslinker containing a segment of poly(ethylene glycol) (PEG). PEG rendered the surface hydrophilic and provided flexible spacers, allowing the preservation of the bioactivity of further captured RGD peptides. NIH 3T3 cells were used to test the cellular compatibility of these chitosan nanofibrous scaffolds. Cell morphology and viability were investigated by SEM, fluorescent staining and cell counting. The results indicate that RGD-modified surfaces significantly improve the cellular compatibility of chitosan nanofibers and suggest a good candidate as a scaffold employed in tissue engineering.
    Biomedical Materials 09/2010; 5(5):054112. · 2.92 Impact Factor