Young Do Jung

Chonnam National University, Gwangju, Gwangju, South Korea

Are you Young Do Jung?

Claim your profile

Publications (23)57.45 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Piperine, a kind of natural alkaloid found in peppers, has been reported to exhibit anti-oxidative and anti-tumor activities, both in vitro and in vivo. Interleukin-6 (IL-6) is an important cytokine that activates the signal transduction, promotes tumor cell metastasis, and induces malignancy, including in gastric cancer. However, the effects of piperine on IL-6 expression in gastric cancer cells have not yet been well defined. In this study, we investigated the effects of piperine on the IL-6 expression, and examined the underlying signaling pathways via RT-PCR, promoter studies and Western blotting in human gastric cancer TMK-1 cells. Our results showed that piperine inhibited interleukin-1β (IL-1β)-induced IL-6 expression in a dose-dependent manner. In addition, piperine also inhibited IL-6 promoter activity. Experiments with mitogen-activated protein kinase (MAPK) inhibitors and dominant negative mutant p38 MAPK indicated that p38 MAPK was essential for IL-6 expression in the TMK-1 cells. Additionally, signal transducer and activator of transcription 3 (STAT3) was also involved in the IL-1β-induced IL-6 expression in gastric cancer cells. Piperine inhibited IL-1β-induced p38 MAPK and STAT3 activation and, in turn, blocked the IL-1β-induced IL-6 expression. Furthermore, gastric cancer cells pretreated with IL-1β showed markedly enhanced invasiveness, which was partially abrogated by treatment with IL-6 siRNA, piperine, and inhibitors of p38 MAPK and STAT3. These results suggest that piperine may exert at least part of its anti-cancer effect by controlling IL-6 expression through the suppression of p38 MAPK and STAT3.
    Molecular and Cellular Biochemistry 09/2014; · 2.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cadmium exposure has been linked to human cancers, including stomach cancer. In this study, the effects of cadmium on urokinase-type plasminogen activator receptor (uPAR) expression in human gastric cancer cells and the underlying signal transduction pathways were investigated. Cadmium induced uPAR expression in a time- and concentration-dependent manner. Cadmium also induced uPAR promoter activity. Additionally, cadmium induced the activation of extracellular signal regulated kinase-1/2 (ERK-1/2), p38 mitogen-activated protein kinase (MAPK), and the activation of c-Jun amino terminal kinase (JNK). A specific inhibitor of MEK-1 (PD98059) inhibited cadmium-induced uPAR expression, while JNK and p38 MAPK inhibitors did not. Expression vectors encoding dominant-negative MEK-1 (pMCL-K97M) also prevented cadmium-induced uPAR promoter activity. Site-directed mutagenesis and electrophoretic mobility shift studies showed that sites for the transcription factors nuclear factor (NF)-κB and activator protein-1 (AP-1) were involved in cadmium-induced uPAR transcription. Suppression of the cadmium-induced uPAR promoter activity by a mutated-type NF-κB-inducing kinase and I-κB and an AP-1 decoy oligonucleotide confirmed that the activation of NF-κB and AP-1 are essential for cadmium-induced uPAR upregulation. Cells pretreated with cadmium showed markedly enhanced invasiveness and this effect was partially abrogated by uPAR-neutralizing antibodies and by inhibitors of ERK-1/2, NF-κB, and AP-1. These results suggest that cadmium induces uPAR expression via ERK-1/2, NF-κB, and AP-1 signaling pathways and, in turn, stimulates cell invasiveness in human gastric cancer AGS cells.
    International journal of oncology. 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs are increasingly implicated in the modulation of the progression of various cancers. We previously observed that KITENIN (KAI1 C-terminal interacting tetraspanin) is highly expressed in sporadic human colorectal cancer (CRC) tissues and that the functional KITENIN complex acts to promote progression of CRC. However, it remains unknown which microRNAs target KITENIN and whether KITENIN-targeting microRNAs modulate CRC cell motility and colorectal tumorigenesis. Here, through bioinformatic analyses and functional studies, we showed that miR-124, miR-27a, and miR-30b negatively regulate KITENIN expression and suppress the migration and invasion of several CRC cell lines via modulation of KITENIN expression. Through in vitro and in vivo induction of mature microRNAs using a tetracycline-inducible system, miR-124 was found to effectively inhibit the invasion of CT-26 colon adenocarcinoma cells and tumor growth in a syngeneic mouse xenograft model. Constitutive overexpression of precursor miR-124 in CT-26 cells suppressed in vivo tumorigenicity and resulted in decreased expression of KITENIN as well as that of MYH9 and SOX9, which are targets of miR-124. Thus, our findings identify that KITENIN-targeting miR-124, miR-27a, and miR-30b function as endogenous inhibitors of CRC cell motility and demonstrate that miR-124 among KITENIN-targeting microRNAs plays a suppressor role in colorectal tumorigenesis.Molecular Therapy (2014); doi:10.1038/mt.2014.105.
    Molecular Therapy 06/2014; · 7.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study was designed to evaluate the efficacy of an orally administered aqueous extract of glutinous rice (GRE) to protect against acute gastric mucosal lesions induced by ethanol, indomethacin, and water immersion restraint stress in rats and to characterize the active substances responsible for the protection. GRE was shown to dose-dependently prevent the gastric lesions induced by the above ulcerogenic treatments at doses of 30 to 300 mg/kg. GRE treatment increased the gastric mucin content and partially blocked the ethanol-induced depletion of the gastric mucus layer. Also, it increased the nonprotein sulfhydryl concentration in the gastric mucosa. The gastroprotective action of GRE was markedly enhanced by co-treatment with 4-8 mg/kg tea extracts. The activity of GRE was completely lost by heat treatment at 80℃ for 3 min or treatment with 0.01% pepsin at 37℃ for 1 h. Protein extraction studies indicated that prolamins are involved in the gastroprotective activity of GRE. Our results suggest that glutinous rice proteins are useful for the prevention and treatment of gastritis and peptic ulcer.
    Chonnam Medical Journal 04/2014; 50(1):6-14.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Helicobacter pylori (H. pylori) is a major etiological factor in the development of gastric cancer. Large-scale epidemiological studies have confirmed the strong association between H. pylori infection and both cancer development and progression. Interleukin-8 (IL-8) is overexpressed in gastric mucosa exposed to H. pylori. The expression of IL-8 directly correlates with a poor prognosis in gastric cancer. IL-8 is multifunctional. In addition to its potent chemotactic activity, it can induce proliferation and migration of cancer cells. In this review, we focus on recent insights into the mechanisms of IL-8 signaling associated with gastric cancer. The relationship between IL-8 and H. pylori is discussed. We also summarize the current therapeutics against IL-8 in gastric cancer.
    World Journal of Gastroenterology 12/2013; 19(45):8192-8202. · 2.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cigarette smoke, specifically the nicotine contained within, has been shown to correlate closely with cell invasion and strategies to downregulate their expression may ultimately be of clinical utility. Matrix metalloproteinase-9 (MMP-9) is critically involved in the cell invasion and metastasis processes. Since nicotine plays a crucial role in the regulation of MMP-9 expression, the investigation of plant-derived compounds capable of modulating nicotine-induced signaling is an issue of concern. In this study, the effects of (-)-epigallocatechin-3-gallate (EGCG), a major green tea catechin, on nicotine-induced cell invasion and MMP-9 activity in ECV304 human endothelial cells were examined. EGCG treatment was found to reduce the MMP-9 expression and transcriptional activity in a dose-dependent manner. EGCG inhibited nicotine-activated production of reactive oxygen species (ROS), which are known as important signaling molecules to activate MMP-9. To further study the mechanisms for the EGCG-mediated regulation of MMP-9, the transcription factors NF-κB and AP-1 activities were examined. EGCG suppressed the nicotine-induced NF-κB and AP-1 activation. Studies with expression vectors encoding mutated NF-κB signaling molecules and AP-1 decoy confirmed that NF-κB and AP-1 were essential for the nicotine-stimulated MMP-9 expression. EGCG also abrogated the nicotine-induced activation of AP-1 subunits c-fos and c-jun. The above studies demonstrate that EGCG may exert at least part of its anti-invasive effect in ECV304 human endothelial cells by controlling MMP-9 expression through the suppression of ROS, NF-κB and AP-1.
    International Journal of Oncology 07/2013; · 2.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Macrophage-stimulating protein (MSP) and its receptor, recepteur d'origine nantais (RON), play an important role in cell proliferation and migration. We have investigated the role of MSP in hydrogen peroxide (H2O2)-induced renal tubular apoptosis. Human renal proximal tubular (HK-2) cells were incubated with H2O2 for 24h in the presence of different concentrations of MSP, and cell viability was measured by MTT assay. The protein expression of Bax, Bcl-2, caspase-3, mitogen-activated protein kinases (MAPKs), phosphatidylinositol-3-kinase (PI3K)/Akt, and nuclear factor-kappa B (NF-κB) was determined by semiquantitative immunoblotting. Apoptosis was assessed by flow cytometry analysis after HK-2 cells were stained with fluorescein isothiocyanate-conjugated annexin V protein and propidium iodide. H2O2 treatment decreased cell viability in HK-2 cells; this was counteracted by MSP pretreatment. H2O2 treatment induced an increased ratio of Bax/Bcl-2, cleaved caspase-3, and the number of condensed nuclei, which was also counteracted by MSP. Flow cytometry analysis showed H2O2-induced apoptosis, and its prevention by MSP treatment. Increased protein expression of phospho-p38 MAPK was attenuated by MSP, while phospho-extracellular signal-regulated kinase and c-Jun-N-terminal kinase were not affected. H2O2 induced NF-κB activation and IκB-α degradation, but the increased nuclear NF-κB activation was counteracted by MSP or by a p38 MAPK inhibitor. H2O2 treatment decreased expression of phospho-PI3K and phospho-Akt, which was reversed by MSP pretreatment. These findings suggest that MSP attenuates H2O2-induced apoptosis in HK-2 cells by modulating the p38 and NF-κB, as well as PI3K/Akt, signaling pathways.
    European journal of pharmacology 05/2013; · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many improvements have been made in the understanding of functional and structural characteristics of proteins in a denaturant-based microenvironment. This study reports the chemical denaturation of methyl parathion hydrolase (MPH, EC 3.1.8.1) using 2,2,2-trifluoroethanol (TFE). MPH is an important enzyme that catalyzes the hydrolysis of organophosphorus agents. However, the regulation of MPH activity and structural changes during unfolding are not well studied, particularly for TFE unfolding. We investigated MPH unfolding with TFE for the first time. In this study, changes in enzymatic activity and unfolding of MPH at different TFE concentrations were investigated by enzyme activity measurements, intrinsic fluorescence and by 1-anilino-8-naphthalenesulfonate (ANS) fluorescence emission spectral scans. The results showed TFE inactivated MPH in a dose-dependent manner. A Lineweaver–Burk plot analysis revealed that the type of inhibition was reversible noncompetitive inhibition. Intrinsic fluorescence and ANS-binding fluorescence showed that TFE induced obvious tertiary structural changes in MPH by exposing hydrophobic groups. Furthermore, we conducted a docking simulation between MPH and TFE. The computer simulation successfully showed the binding structure and we estimated stability by calculating the binding energy (lowest binding energy: -3.18 kcal/mol). The results demonstrate that MPH can be inactivated by TFE, and provide new insights into the mechanism of TFE-induced unfolding of MPH and inhibition of ligand binding.
    PROCESS BIOCHEMISTRY 04/2013; 48(4):625–632. · 2.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the unintentional byproduct of various industrial processes, is classified as human carcinogen and could disrupt reproductive, developmental and endocrine systems. Induction of cyp1a1 is used as an indicator of TCDD exposure. We sought to determine tissues that are vulnerable to TCDD toxicity using a transgenic zebrafish (Danio rerio) model. We inserted a nuclear enhanced green fluorescent protein gene (EGFP) into the start codon of a zebrafish cyp1a gene in a fosmid clone using DNA recombineering. The resulting recombineered fosmid was then used to generate cyp1a reporter zebrafish, embryos of which were exposed to TCDD. Expression pattern of EGFP in the reporter zebrafish mirrored that of endogenous cyp1a mRNA. In addition, exposure of the embryos to TCDD at as low as 10pM for 72h, which does not elicit morphological abnormalities of embryos, markedly increased GFP expression. Furthermore, the reporter embryos responded to other AhR ligands as well. Exposure of the embryos to TCDD revealed previously reported (the cardiovascular system, liver, pancreas, kidney, swim bladder and skin) and unreported target tissues (retinal bipolar cells, otic vesicle, lateral line, cloaca and pectoral fin bud) for TCDD. Transgenic cyp1a reporter zebrafish we have developed can further understanding of ecotoxicological relevance and human health risks by TCDD. In addition, they could be used to identify agonists of AhR and antidotes to TCDD toxicity.
    Aquatic toxicology (Amsterdam, Netherlands) 03/2013; 134-135C:57-65. · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abnormal accumulation and activation of the recepteur d'origine nantais (RON) has been implicated in epithelial tumor carcinogenesis. In the present study, we examined the effect of epigallocatechin-3-gallate (EGCG), the major green tea catechin, on the induction of RON and tumor growth in human gastric cancer. EGCG inhibited phorbol 12‑myristate 13‑acetate (PMA)‑induced RON expression and reduced RON transcriptional activity. However, (-)‑epigalloca-techin (EGC), (-)‑epicatechin gallate (ECG) and (-)‑epicatechin (EC) did not affect RON expression. Experiments with deleted and site‑directed mutagenesis of the RON promoter indicated that Egr-1 binding sites in the RON promoter may be the EGCG‑response element acting as a cis‑element in gastric cancer cells. EGCG also inhibited PMA-induced Egr-1 expression and DNA binding in a dose-dependent manner. Furthermore, gastric cancer cells pretreated with PMA showed markedly enhanced invasiveness, which was partially abrogated by EGCG and siRNA‑targeted RON and Egr-1. EGCG significantly reduced tumor growth in an in vivo tumor model, whereas RON expression was downregulated. These results suggest that EGCG may exert at least part of its anticancer effect by controlling RON expression through suppression of Egr-1 activation.
    International Journal of Oncology 01/2013; · 2.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to evaluate a monoclonal antibody-based test to detect Helicobacter pylori-specific antigen in gastric aspirates from humans. Sixty-one volunteers were enrolled in the study. All of the subjects underwent a (13)C-urea breath test (UBT) before esophagogastroduodenoscopy. Gastric aspirates were analyzed for pH and ammonia and used for polymerase chain reaction (PCR), culture, and monoclonal antibody-based detection of H. pylori. Multiple biopsies of the gastric antrum and body were obtained for a rapid urease test (RUT) and histological evaluation. Thirty-six subjects were H. pylori-positive and 25 were H. pylori-negative according to the UBT results. Compared with the H. pylori-negative subjects, H. pylori-positive subjects had a higher pH (4.77±1.77 vs 3.49±1.30, p<0.05) and ammonia level (1,130.9±767.4 vs 184.2±126.3, p<0.0001). The sensitivities and specificities of the PCR test, RUT, culture test, and monoclonal antibody-based test were 100% and 72%, 89% and 100%, 47% and 100%, and 78% and 100%, respectively. The monoclonal antibody-based test for diagnosing H. pylori infection in gastric aspirates has increased sensitivity compared with the culture test and specificity as high as that of the RUT. The test may be useful as an additive test for examining gastric aspirates.
    Gut and liver 01/2013; 7(1):30-4. · 1.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Urokinase-type plasminogen activator receptor (uPAR) expression is elevated during inflammation, tissue remodeling and in many human cancers. This study investigated the effect of nicotine, a major alkaloid in tobacco, on uPAR expression and cell invasiveness in ECV304 endothelial cells. Nicotine stimulated uPAR expression in a dose-dependent manner and activated extracellular signal-regulated kinases-1/2 (Erk-1/2), c-Jun amino-terminal kinase (JNK) and p38 mitogen activated protein kinase (MAPK). Specific inhibitors of MEK-1 (PD98059) and JNK (SP600125) inhibited the nicotine-induced uPAR expression, while the p38 MAPK inhibitor SB203580 did not. Expression vectors encoding dominant negative MEK-1 (pMCL-K97M) and JNK (TAM67) also prevented nicotine-induced uPAR promoter activity. The intracellular hydrogen peroxide (H(2)O(2)) content was increased by nicotine treatment. The antioxidant N-acetylcysteine prevented nicotine-activated production of reactive oxygen species (ROS) and uPAR expression. Furthermore, exogenous H(2)O(2) increased uPAR mRNA expression. Deleted and site-directed mutagenesis demonstrated the involvement of the binding sites of transcription factor nuclear factor-kappaB (NF-κB) and activator protein (AP)-1 in the nicotine-induced uPAR expression. Studies with expression vectors encoding mutated NF-κB signaling molecules and AP-1 decoy confirmed that NF-κB and AP-1 were essential for the nicotine-stimulated uPAR expression. MAPK (Erk-1/2 and JNK) and ROS functioned as upstream signaling molecules in the activation of AP-1 and NF-κB, respectively. In addition, ECV304 endothelial cells treated with nicotine displayed markedly enhanced invasiveness, which was partially abrogated by uPAR neutralizing antibodies. The data indicate that nicotine induces uPAR expression via the MAPK/AP-1 and ROS/NF-κB signaling pathways and, in turn, stimulates invasiveness in human ECV304 endothelial cells.
    Toxicology and Applied Pharmacology 03/2012; 259(2):248-56. · 3.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Overexpression of recepteur d'Origine nantais (RON) and urokinase plasminogen activator receptor (uPAR) have been observed in human gastric cancers. However, the interaction between RON and uPAR in gastric cancer is unclear. The present study investigated the effect of macrophage-stimulating protein (MSP, the RON ligand) on uPAR expression and the underlying signal pathways in human gastric cancer AGS cells. uPAR messenger RNA expression was induced by MSP in a time- and concentration-dependent manner. MSP also induced uPAR promoter activity. The introduction of RON-specific small interfering RNA (siRNA) significantly affected the MSP-induced uPAR transcription. Deleted and site-directed mutagenesis studies demonstrated the involvement of the binding sites of transcription factor nuclear factor-kappaB (NF-κB) and activator protein (AP)-1 in the MSP-induced uPAR expression. Studies with expression vectors encoding mutated-type NF-κB signaling molecules and AP-1 decoy confirmed that NF-κB and AP-1 were essential for the MSP-induced uPAR expression. In addition, MSP induced the activation of extracellular signal-regulated kinase-1/2 (Erk-1/2), c-Jun amino terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). Dominant-negative mutants (K97M and TAM67) and specific inhibitors of Erk-1/2 and JNK were able to suppress the MSP-induced uPAR expression. AGS cells pretreated with MSP showed a remarkably enhanced invasiveness, which was partially abrogated by siRNA-targeted RON and uPAR-neutralizing antibodies. The above results suggest that MSP induces uPAR expression via MAPK, AP-1 and NF-κB signaling pathways and, in turn, stimulates cell invasiveness in human gastric cancer AGS cells.
    Carcinogenesis 11/2010; 32(2):175-81. · 5.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The abnormal accumulation and activation of the receptor tyrosine kinase, Recepteur d'Origine Nantais (RON), has been implicated in tumorigenesis and metastasis in epithelial tumors including gastric cancer. This study examined whether the sequence-specific small interfering RNA (siRNA) suppression of the RON expression could induce apoptotic cell death, and investigated the involved molecular mechanisms. Sequence-specific siRNA effectively suppressed the RON expression at both the mRNA and protein levels. Silencing of the RON expression significantly inhibited gastric cancer cell proliferation and induced apoptosis in a time-dependent manner. The induction of apoptosis was confirmed by the ladder-patterned DNA fragmentation, the presence of cleaved and condensed nuclear chromatin and the increased number of annexin V-positive cells. RON-targeted siRNA effectively inhibited the constitutive nuclear factor-kappaB (NF-kappaB) activation as revealed by an altered electrophoretic mobility shift. In agreement with this, silencing of the RON expression resulted in a decrease in the nuclear level of the p65 subunit of NF-kappaB. The transfection of siRNA, which blocked the RON expression, also caused a change in the ratio of Bax/Bcl-2 in a manner that favored apoptosis. The siRNA silencing of RON induced cytochrome c release and the activation of caspase-8 and caspase-9. These results indicate that RON-targeted siRNA could be therapeutically efficacious by inducing cell apoptosis through the modulation of the NF-kappaB and Bcl-2 family in gastric cancer cells.
    Oncology Reports 09/2010; 24(3):709-14. · 2.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The secondary bile acid lithocholic acid (LCA) induced expression of urokinase-type plasminogen activator receptor (uPAR) and enhanced cell invasiveness in colon cancer cells. A dominant negative mutant or a specific inhibitor of MEK-1 suppressed LCA-induced uPAR expression. Deletions and site-directed mutagenesis revealed that the AP-1 site was required for LCA-induced uPAR transcription. LCA-mediated enhanced cell invasiveness was partially abrogated by uPAR neutralizing antibody and inhibitors of both Erk-1/2 and AP-1. These results suggest that LCA induces uPAR expression via Erk-1/2 and AP-1 pathway and, in turn, stimulate invasiveness of human colon cancer cells.
    Cancer letters 09/2009; 290(1):123-8. · 5.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Elaeagnus glabra (Thunb.), an evergreen shrub with alternate leaves, has been used as a medicinal plant in Korea. Since many plant-derived molecules have inhibitory effects on tumor cell invasion, primarily via suppression of the activity of matrix metalloproteinases (MMPs), we investigated the effect of the methanol extract of E. glabra on tumor cell invasion. The invasiveness of HT1080 human fibrosarcoma cells were reduced in a dose-dependent manner following 24 h treatment of up to 200 microg/ml of the E. glabra extract, at which concentration no cytotoxicity occurred. Furthermore, gelatinolytic activities, and the protein and mRNA levels of MMP-2 and MMP-9 were also suppressed with increasing concentrations of the extract. Given that MMP-2 and MMP-9 are instrumental in tumor cell invasion, it is very likely that the reduction in tumor cell invasion by E. glabra extract is a consequence, at least in part, of suppressed expression of both MMP-2 and MMP-9. Isolation of a molecule(s) responsible for the extract inhibition of tumor cell invasion would pave the way for the development of a new generation of metastasis inhibitors.
    Oncology Reports 03/2009; 21(2):559-63. · 2.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Resveratrol, a grape polyphenol, is thought to have anti-inflammatory, cardioprotective, and cancer preventive properties. However, the mechanisms by which resveratrol might produce these effects are not clearly defined. A study was performed on whether resveratrol could prevent tumor cells from adhering to endothelial cells, which is an essential step during tumor metastasis. Phorbol 12-myristate 13-acetate (PMA) induced human fibrosarcoma HT1080 cells to adhere to endothelial ECV304 cells. Resveratrol inhibited PMA-induced HT1080 cells adhesion in a dose-dependent manner. To further study the mechanisms of this resveratrol-mediated blockade of tumor cell adhesion, the expression of the cell adhesion molecules intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and E-selectin were examined. PMA induced ICAM-1 expression in HT1080 cells. In contrast, the expression of VCAM-1 and E-selectin were not altered by PMA treatment. The increase in tumor cell adhesion to endothelial cells following PMA treatment was partially inhibited by ICAM-1 siRNA or neutralizing antibodies. Resveratrol reduced the PMA-induced ICAM-1 expression in HT1080 cells as determined by RT-PCR, flow cytometry and ELISA. As the induction of ICAM-1 requires activation of the transcription factor NF-kappaB, the effects of resveratrol on the activation of this factor in HT1080 cells was also investigated. Resveratrol inhibited the PMA-induced NF-kappaB activation and NF-kappaB-dependent luciferase activity. These results suggest that resveratrol may exert an antimetastatic effect by inhibiting NF-kappaB activation and ICAM-1 expression, leading to suppression of tumor cell adhesion to endothelial cells.
    Anticancer research 02/2009; 29(1):355-62. · 1.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is a strong correlation between the overexpression of urokinase-type plasminogen activator receptor (uPAR) and gastric cancer invasion. This study examined the effect of phospholipid lysophosphatidic acid (LPA) on uPAR expression in human gastric cancer AGS cells and the underlying signal transduction pathways. Treating human gastric AGS cells with LPA induced the expression of uPAR mRNA and promoter activity in both a time- and dose-dependent manner. Small interfering RNA targeting for LPA receptors, dominant negative Rho-family GTPase (RhoA, Rac1, and Cdc42) and an expression vector encoding a mutated c-jun (TAM67) partially blocked the LPA-induced uPAR expression. Site-directed mutagenesis and electrophoretic mobility shift studies showed that the transcription factors activation protein-1 (AP-1) and nuclear factor (NF)-kappaB are essential for the LPA-induced uPAR transcription. In addition, AGS cells treated with LPA showed enhanced invasion, which was partially abrogated by the uPAR-neutralizing antibodies and inhibitors of Rho kinase, JNK, and NF-kappaB. This suggests that LPA induces uPAR expression through the LPA receptors, Rho-family GTPase, JNK, AP-1 and NF-kappaB signaling pathways, which in turn stimulates the cell invasiveness of human gastric cancer AGS cells.
    Journal of Cellular Biochemistry 07/2008; 104(3):1102-12. · 3.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Licochalcones have a variety of biological properties including anti-tumor, anti-parasitic and anti-bacterial activities. Recently, a new retrochalcone (licochalcone E, Lico-E) was isolated from the roots of Glycyrrhiza inflata (Chem. Pharm. Bull., 53, 2005, Yoon et al.) by cytotoxicity-guided fractionation. This study examined whether or not Lico-E-induced endothelial cell death occurs through apoptosis, and investigated molecular mechanisms involved in this process. Lico-E was found to suppress ECV304 cell growth and induce apoptosis. The induction of apoptosis by Lico-E was confirmed by the ladder-patterned DNA fragmentation, the presence of cleaved and condensed nuclear chromatin and the increased number of annexin V-positive cells. Lico-E could effectively inhibit the constitutive NF-kappaB activation, as revealed by the electrophoretic mobility shift assay and NF-kappaB-dependent luciferase reporter study. In addition, the Lico-E treatment caused a change in the Bax/Bcl-2 ratio that favored apoptosis. These results suggest that Lico-E induces endothelial cell apoptosis by modulating NF-kappaB and the Bcl-2 family.
    Biological & Pharmaceutical Bulletin 01/2008; 30(12):2290-3. · 1.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Telomeres are simple repeat elements located at each chromosome end of eukaryotic cells. The main function of telomeres is to cap the chromosome end and protect it from enzymatic attack. Telomerase that facilitates the synthesis of telomere has been detected in not only cancer but also precancerous lesion. In this study, we compared the telomerase expression between low grade and high grade colorectal tubular adenoma. Among tissues from forty eight patients with colorectal tubular adenoma (23 low grade and 25 high grade colorectal dysplasia), telomerase expressions were evaluated by immunohistochemical staining. We classified 48 patients into two groups by the extent of nuclei staining pattern. High telomerase expression was a group which showed staining nucleus pattern above 50% in tubular adenoma. Low telomerase expression was a group which showed staining pattern nucleus below 50%. Twelve in 25 high grade colorectal dysplasia showed high telomerase expression (48%). Only one in 23 low grade colorectal dysplasia showed high telomerase expression (4%). Telomerase expression was much higher in the tissues from the patients with high grade than in those with low grade colorectal dysplasia (p<0.05). Activation of telomerase may be related to the malignant potential in colorectal epithelial cells. Further studies are needed to define the role of telomerase in colorectal tumorigenesis.
    The Korean journal of gastroenterology = Taehan Sohwagi Hakhoe chi 10/2007; 50(3):164-9.