Yun-Feng Cao

Chinese Academy of Sciences, Peping, Beijing, China

Are you Yun-Feng Cao?

Claim your profile

Publications (24)57.64 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Bakuchiol is a promising anti-tumor candidate with resveratrol-like structure. The present study aims to evaluate the inhibition potential of bakuchiol towards UDP-glucuronosyltransferases (UGT) 1A isoforms. An in vitro incubation system using 4-methylumbelliferone (4-MU) glucuronidation was used to evaluate the inhibition capability of bakuchiol towards UGT1A1, 1A3, 1A6, 1A7, 1A8, 1A9 and 1A10. The glucuronidation of trifluoperazine (TFP) was employed as the probe reaction to determine bakuchiol's inhibition towards UGT1A4. At 1 microM and 10 microM of bakuchiol, no or weak inhibition was observed for all the tested UGT1A isoforms. At 100 microM of bakuchiol, the activity of UGT1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9 and 1A10 was inhibited by -46.2%, 74.7%, 17.8%, 98.7%, 70.4%, 99.2%, 75.8%, and 93.3%, respectively. Further inhibition kinetic behaviour was determined for UGT1A6, 1A8, and 1A10. Both Dixon plot and Lineweaver-Burk plot showed the noncompetitive inhibition of bakuchiol towards all these three UGT isoforms. The inhibition kinetic parameters (Ki) were calculated to be 5.3, 1.8, and 92.6 microM for UGT1A6, 1A8, and 1A10, respectively. In combination with the in vivo exposure of bakuchiol, the high possibility of in vivo inhibition of UGT1A6 and 1A8 was predicted. However, relatively low possibility of in vivo inhibition towards UGT1A10 was predicted due to lower in vivo concentration of bakuchiol than its inhibition parameter (Ki). All these information will be helpful for the R&D of bakuchiol as a promising anti-tumor drug.
    Pharmazie 01/2014; 69(1):60-3. · 0.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Herb-drug interaction strongly limits the clinical application of herbs and drugs, and the inhibition of herbal components towards important drug-metabolizing enzymes (DMEs) has been regarded as one of the most important reasons. The present study aims to investigate the inhibition potential of andrographolide derivatives towards one of the most important phase II DMEs UDP-glucuronosyltransferases (UGTs). Recombinant UGT isoforms (except UGT1A4)-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation were employed to firstly screen the andrographolide derivatives' inhibition potential. High specific inhibition of andrographolide derivatives towards UGT2B7 was observed. The inhibition type and parameters (Ki) were determined for the compounds exhibiting strong inhibition capability towards UGT2B7, and human liver microsomes (HLMs)-catalyzed zidovudine (AZT) glucuronidation probe reaction was used to furtherly confirm the inhibition behaviour. In combination of inhibition parameters (Ki) and in vivo concentration of andrographolide and dehydroandrographolide, the potential in vivo inhibition magnitude was predicted. Additionally, both the in vitro inhibition data and computational modeling results provide important information for the modification of andrographolide derivatives as selective inhibitors of UGT2B7. Taken together, data obtained from the present study indicated the potential herb-drug interaction between Andrographis paniculata and the drugs mainly undergoing UGT2B7-catalyzed metabolic elimination, and the andrographolide derivatives as potential candidates for the selective inhibitors of UGT2B7.
    Toxicology and Applied Pharmacology 01/2014; · 3.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A new ratiometric fluorescent probe derived from 2-(2-hydroxy-3-methoxyphenyl) benzothiazole (HMBT) has been developed for selective monitoring of human carboxylesterase 1 (hCE1). The probe is designed by introducing benzoyl moiety to HMBT. The prepared latent spectroscopic probe 1 displays satisfying stability under physiological pH conditions with very low background signal. Both the reaction phynotyping and chemical inhibition assays demonstrated that hCE1 mediated the specific cleavage of the carboxylic ester bond of probe 1 in human biological samples. The release of HMBT leads to a remarkable red-shifted emission in fluorescence spectrum (120 nm large emission shift). Furthermore, human cell-based assays show that probe 1 is cell membrane permeable, and it can be used for bioassay and cellular imaging of hCE1 activity in HepG2 cells. These findings lead to the development of a simple and sensitive fluorescent method for measurement of hCE1 activity in vitro or in living cells, in the presence of additional enzymes or endogenous compounds.
    Biosensors & bioelectronics 01/2014; 57:30–35. · 5.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bufalin 5β-hydroxylation was found to be an isoform-specific biotransformation probe substrate for cytochrome P450 3A4 (CYP3A4). The probe reaction was well-characterized and it can be used for measuring the real catalytic activities of CYP3A4 from different enzyme sources.
    Chemical Communications 09/2013; · 6.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bisphenol A (BPA), the important endocrine-disrupting chemical (EDC), has been reported to be able to induce various toxicity. The present study aims to understand the toxicity behavior of bisphenol A through evaluating the inhibition profile of bisphenol A towards UDP-glucuronosyltransferase (UGT) isoforms. In vitro recombinant UGTs-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction was employed as probe reaction for all the tested UGT isoforms. The results showed that bisphenol A exerted stronger inhibition towards UGT2B isoforms than UGT1A isoforms. Furthermore, the inhibition kinetic type and parameters (Ki) were determined for the inhibition of bisphenol A towards UGT2B4, 2B7, 2B15, and 2B17. Bisphenol A exhibited the competitive inhibition towards UGT2B4, and noncompetitive inhibition towards UGT2B7, 2B15 and 2B17. The inhibition kinetic parameters (Ki) were calculated to be 1.1, 32.6, 5.6, and 19.9μM for UGT2B4, 2B7, 2B15 and 2B17, respectively. In combination with the in vivo concentration of bisphenol A, the elevation of exposure dose was predicted to increase by 29.1%, 1%, 5.7%, and 1.6% for UGT2B4, 2B7, 2B15, and 2B17, indicating the high influence of bisphenol A towards the in vivo UGT2B isofroms-mediated metabolism of xenobiotics and endogenous substances. All these data provide the supporting information for deeper understanding of toxicology of bisphenol A.
    Chemosphere 08/2013; · 3.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Scutellarin is an important bioactive flavonoid extracted from Erigeron breviscapus (Vant.) Hand-Mazz, and scutellarein is the corresponding aglycone of scutellarin. The present study aims to compare the inhibition potential of scutellarin and scutellarein towards several important UDP-glucuronosyltransferase (UGT) isoforms, including UGT1A1, UGT1A6, UGT1A9 and UGT2B7. It was demonstrated that scutellarein exerted stronger inhibition towards the tested UGT isoforms than scutellarin. Furthermore, the inhibition kinetic type and parameters (Ki ) were determined for the scutellarein's inhibition towards these UGT isoforms. Competitive inhibition of scutellarein towards all these UGT isoforms was demonstrated, and the Ki values were calculated to be 0.02, 5.0, 5.8 and 35.9 μM for UGT1A1, 1A6, 1A9 and 2B7, respectively. Using in vivo maximum plasma concentration of scutellarein in rat, the in vitro-in vivo extrapolation was performed to predict in vivo situation, indicating the most possible in vivo adverse effects due to the inhibition of scutellarein towards UGT1A1. All these results remind us to monitor the utilization of scutellarin and scutellarein, and the herbs containing these two components. Copyright © 2013 John Wiley & Sons, Ltd.
    Phytotherapy Research 04/2013; · 2.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVES: The aim of this work was to identify the uridine glucuronosyltransferase (UGT) isoforms involved in the metabolism of the broad-spectrum antiviral drug arbidol. METHODS: A human liver microsome (HLM) incubation system was employed to catalyse the formation of arbidol glucuronide. The glucuronidation activity of commercially recombinant UGT isoforms towards arbidol was screened. A combination of kinetic analysis and chemical inhibition study was used to determine the UGT isoforms involved in arbidol's glucuronidation. KEY FINDINGS: The arbidol glucuronide was detected when arbidol was incubated with HLMs in the presence of UDP-glucuronic acid. The Eadie-Hofstee plot showed that glucuronidation of arbidol was best fit to the Michaelis-Menten kinetic model, and Km and apparent Vmax were calculated to be 8.0 ± 0.7 μm and 2.03 ± 0.05 nmol/min/mg protein, respectively. Assessment of a panel of recombinant UGT isoforms revealed that UGT1A1, UGT1A3 and UGT1A9 could catalyse the glucuronidation of arbidol. Kinetic analysis and chemical inhibition study demonstrated that UGT1A9 was the predominant UGT isoform involved in arbidol glucuronidation in HLMs. CONCLUSIONS: The major contribution of UGT1A9 towards arbidol glucuronidation was demonstrated in this study.
    The Journal of pharmacy and pharmacology. 04/2013; 65(4):521-527.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Danshen is one of the most famous herbs in the world, and more and more danshen-prescribed drugs interactions have been reported in recent years. Evaluation of inhibition potential of danshen's major ingredients towards UDP-glucuronosyltransferases (UGTs) will be helpful for understanding detailed mechanisms for danshen-drugs interaction. Therefore, the aim of the present study is to investigate the inhibitory situation of cryptotanshinone and dihydrotanshinone I towards UGT enzymes-catalyzed propofol glucuronidation. In vitro human liver microsomes (HLMs) incubation system was used, and the results showed that cryptotanshinone and dihydrotanshinone I exhibited dose-dependent inhibition towards HLMs-catalyzed propofol glucuronidation. Dixon plot and Lineweaver-Burk plot showed that the inhibition type was best fit to competitive inhibition type for both cryptotanshinone and dihydrotanshinone I. The second plot using the slopes from the Lineweaver-Burk plot versus the concentrations of cryptotanshinone or dihydrotanshinone I was employed to calculate the inhibition parameters (K(i)) to be 0.4 and 1.7μM, respectively. Using the reported maximum plasma concentration (C(max)), the altered in vivo exposure of propofol was increased by 10% and 8.2% for the co-administration of dihydrotanshinone I and cryptotanshinone, respectively. All these results indicated the possible danshen-propofol interaction due to the inhibition of of dihydrotanshinone I and cryptotanshinone towards the glucuronidation reaction of propofol.
    Fitoterapia 01/2013; · 2.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The wide utilization of ginseng provides the high risk of herb-drug interaction (HDI) with many clinical drugs. The inhibition of ginsenosides towards drug-metabolizing enzymes (DMEs) has been regarded as an important reason for herb-drug interaction (HDI). Compared with the deep studies on the ginsenosides' inhibition towards cytochrome P450 (CYP), the inhibition of ginsenosides towards the important phase II enzymes UDP-glucuronosyltransferases (UGTs) remains to be unclear. The present study aims to evaluate the inhibition behaviour of ginsenosides towards important UGT isoforms located in the liver and intestine using in vitro methods. The recombinant UGT isoforms-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction was employed as in vitro probe reaction. The results showed that structure-dependent inhibition existed for the inhibition of ginsenosides towards UGT isoforms. To clarify the possibility of in vivo herb-drug interaction induced by this kind of inhibition, ginsenoside Rg(3) was selected as an example, and the inhibition kinetic type and parameters (K(i)) were determined. Rg(3) competitively inhibited UGT1A7, 2B7 and 2B15-catalyzed 4-MU glucuronidation reaction, and exerted noncompetitive inhibition towards UGT1A8-catalyzed 4-MU glucuronidation. The inhibition parameters (K(i) values) were calculated to be 22.6, 7.9, 1.9, and 2.0μM for UGT1A7, 1A8, 2B7 and 2B15. Using human maximum plasma concentration of Rg(3) (400ng/ml (0.5μM)) after intramuscular injection of 60mg Rg(3), the area under the plasma concentration-time curve (AUC) was extrapolated to increase by 2.2%, 6.3%, 26.3%, and 25% for the co-administered drugs completely undergoing the metabolism catalyzed by UGT1A7, 1A8, 2B7 and 2B15, respectively. All these results indicated that the ginsenosides' inhibition towards UGT isoforms might be an important reason for ginseng-drug interaction.
    Toxicology and Applied Pharmacology 01/2013; · 3.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Isoquiritigenin, a herbal ingredient with chalcone structure, has been speculated to be able to inhibit one of the most drug-metabolizing enzymes (DMEs) UDP-glucuronosyltransferase (UGT). Therefore, the aim of the present study was to investigate the inhibition of isoquiritigenin towards important UGT isoforms in the liver and intestine, including UGT1A1, 1A3, 1A6, 1A7, 1A8, 1A9 and 1A10. The recombinant UGTs-catalyzed 4-methylumbelliferone (4-MU) glucuronidation was used as probe reactions. The results showed that 100 μM of isoquiritigenin inhibited the activity of UGT1A1, UGT1A3, UGT1A6, UGT1A7, UGT1A8, UGT1A9, and UGT1A10 by 95.2%, 76.1%, 78.9%, 87.2%, 67.2%, 94.8%, and 91.7%, respectively. The data fitting using Dixon plot and Lineweaver-Burk plot showed that the inhibition of UGT1A1, UGT1A9 and UGT1A10 by isoquiritigenin was all best fit to the competitive inhibition, and the second plot using the slopes from the Lineweaver-Burk plot versus isoquiritigenin concentrations was used to calculate the inhibition kinetic parameter (K(i)) to be 0.7 μM, 0.3 μM, and 18.3 μM for UGT1A1, UGT1A9, and UGT1A10, respectively. All these results indicated the risk of clinical application of isoquiritigenin on the drug-drug interaction and other possible disease induced by the inhibition of isoquiritigenin towards these UGT isoforms.
    Fitoterapia 12/2012; · 2.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Deoxyschizandrin and schisantherin A are major bioactive lignans isolated from Fructusschisandrae which has been widely used as a tonic in traditional Chinese medicine for manyyears. Inhibition of UDP-glucuronosyltransferases (UGTs) by herbal components might be animportant reason for clinical herb–drug interaction. The aim of the present study is toinvestigate the inhibitory effect of deoxyschizandrin and schisantherin A on major UGTisoforms. Recombinant UGT isoforms were used as enzyme source, and a nonspecific substrate4-methylumbelliferone (4-MU) was utilized as substrate. The results showed that 100 μM ofdeoxyschizandrin and schisantherin A exhibited strong inhibition on UGT1A3, and negligibleinhibition on other tested UGT isoforms. Furthermore, deoxyschizandrin and schisantherin Awere demonstrated to inhibit UGT1A3 in a concentration-dependent manner, with IC50 valueof 10.8±0.4 μM and 12.5±0.5 μM, respectively. Dixon and Lineweaver–Burk plots showedthat inhibition of UGT1A3 by deoxyschizandrin was best fit to competitive inhibition type, andinhibition kinetic parameter (Ki) was calculated to be 0.48 μM. Inhibition of UGT1A3 byschisantherin A gave the best fit for types of noncompetitive inhibition, and the results showedKi to be 11.3 μM. All these experimental data suggested that herb–drug interaction might occurwhen deoxyschizandrin or schisantherin A containing herbs were co-administered with drugswhich mainly undergo UGT1A3-mediated metabolism. However, given that many in vivofactors could influence the in vitro–in vivo extrapolation (IVIVE), these in vitro inhibitoryparameters should be considered with caution.
    Fitoterapia 12/2012; 83(8):1415-9. · 2.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Carvacrol and thymol are phenolic compounds with similar structures isolated from many aromatic plants, and have been demonstrated to exert multiple pharmacological effects. The metabolic and pharmacokinetic behaviour of thymol and carvacrol has received much attention. Carvacrol and thymol have been demonstrated to undergo phase I metabolism such as hydroxylation reaction. However, drug-metabolizing enzymes involved in this process remain unclear. Given that cytochrome P450s (CYPs) are involved in most phase I metabolism, the aim of the present study was to investigate the role of CYPs in the metabolism of thymol and carvacrol. After incubation with human liver microsomes (HLMs) in the presence of NADPH, a new metabolite and two metabolites were detected for thymol and carvacrol, respectively. A combination of chemical inhibition studies and assays with recombinant CYP isoforms demonstrated that CYP2A6 was the predominant drug-metabolizing enzyme involved in the metabolism of thymol and carvacrol. All these results remind the researchers that special attention should be paid on pharmacokinetic and clinical outcomes when thymol or carvacrol was co-administrated with other compounds mainly undergoing CYP2A6-mediated metabolism.
    Pharmazie 12/2012; 67(12):1002-6. · 0.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the present study is to evaluate the inhibitory effects of liver UDP-glucuronosyltransferases (UGTs) by glycyrrhizic acid and glycyrrhetinic acid, which are the bioactive ingredients isolated from licorice. The results showed that glycyrrhetinic acid exhibited stronger inhibition towards all the tested UGT isoforms, indicating that the deglycosylation process played an important role in the inhibitory potential towards UGT isoforms. Furthermore, the inhibition kinetic type and parameters were determined for the inhibition of glycyrrhetinic acid towards UGT1A3 and UGT2B7. Data fitting using Dixon and Lineweaver-Burk plots demonstrated that the inhibition of UGT1A3 and UGT2B7 by glycyrrhetinic acid was best fit to competitive and noncompetitive type, respectively. The second plot using the slopes from Lineweaver-Burk plots versus glycyrrhetinic acid concentrations was employed to calculate the inhibition kinetic parameters (K(i) ), and the values were calculated to be 0.2 and 1.7 μM for UGT1A3 and UGT2B7, respectively. All these results remind us the possibility of UGT inhibition-based herb-drug interaction. However, the explanation of these in vitro parameters should be paid more caution due to complicated factors, including the probe substrate-dependent UGT inhibition behaviour, environmental factors affecting the abundance of herbs' ingredients, and individual difference of pharmacokinetic factors. Copyright © 2012 John Wiley & Sons, Ltd.
    Phytotherapy Research 11/2012; · 2.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The detailed mechanisms on licorice-drug interaction remain to be unclear. The aim of the present study is to investigate the inhibition of important UGT isoforms by two important ingredients of licorice, liquiritin, and liquiritigenin. The results showed that liquiritigenin exhibited stronger inhibition towards all the tested UGT isoforms than liquiritin. Data fitting using Dixon and Lineweaver-Burk plots demonstrated the competitive inhibition of liquiritigenin towards UGT1A1 and UGT1A9-mediated 4-MU glucuronidation reaction. The inhibition kinetic parameters (K(i) ) were calculated to be 9.1 and 3.2 μM for UGT1A1 and UGT1A9, respectively. Substrate-dependent inhibition behaviour was also observed for UGT1A1 in the present study. All these results will be helpful for understanding the deep mechanism of licorice-drug interaction. However, when translating these in vitro parameters into in vivo situations, more complex factors should be considered, such as substrate-dependent inhibition of UGT isoforms, the contribution of UGT1A1 and UGT1A9 towards the metabolism of drugs, and many factors affecting the abundance of ingredients in the licorice. Copyright © 2012 John Wiley & Sons, Ltd.
    Phytotherapy Research 10/2012; · 2.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thienorphine has been demonstrated to be a potent, long-acting partial opioid agonist. It is being developed as a good candidate to treat opioid dependence. The thienorphine's glucuronide was detected after thienorphine was incubated with human liver microsomes (HLMs). Recombinant UGT isoforms screening experiment and enzyme kinetic study showed that UGT1A1 completely contributed to the glucuronidation of thienorphine. Among the tested UGT isoforms, UGT1A3 and UGT2B7 were inhibited by thienorphine, with other UGT isoforms negligibly influenced. The inhibition type is competitive, and inhibition kinetic parameters (K(i)) were 1.65 and 5.27 μM for UGT1A3 and UGT2B7, respectively. However, due to low plasma concentration of thienorphine, in vivo drug-drug interaction might not occur.
    Xenobiotica 07/2012; · 1.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Evodiamine is the main active alkaloid of Evodia rutaecarpa (E. rutaecarpa) and has been demonstrated to exhibit many pharmacological activities including vasorelaxation, uterotonic action, anoxia and control of body temperature. The present study focused on the metabolism of evodiamine. Human and phenobarbital-induced rat liver microsomal incubation of evodiamine in the presence of NADPH resulted in the formation of five major metabolites (M-1, M-2, M-3, M-4, M-5). Four metabolites (M-1, M-2, M-3 and M-5) were identified to mono-hydroxylated evodiamine and one metabolite (M-4) was identified to be N-demethylated evodiamine. CYP3A4, CYP2C9 and CYP1A2 were identified to be the main CYP isoforms involved in the metabolism of evodiamine in human liver microsomes. Finding new metabolites can help us decipher novel substance basis of efficiency and toxicity. Elucidation of drug metabolizing enzymes will facilitate explaining the individual difference for response to the same drugs or herbs and the potential drug-drug interaction or herb-drug interaction. Taken together, these results are of significance for better understanding the pharmacokinetic behaviour of evodiamine and helpful for clinical application of evodiamine and E. rutaecarpa. Copyright © 2012 John Wiley & Sons, Ltd.
    Phytotherapy Research 07/2012; · 2.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study was conducted to investigate the relationship between the anti-stress and hepato-protective effects of Schisandra Lignans Extract (SLE) on stress-induced liver damage. Seven weeks old male mice were fixed in a restraint tube for 18 h to induce liver damage. SLE was orally administered to animals for 5 days at dosages of 100 and 200 mg/kg/day before exposed to restraint stress. Oral administration of SLE significantly reduced restraint-induced liver damage in experimental animal. SLE was further found to significantly alleviate the provocation of corticosterone in stressed mice. SLE also significantly decreased oxidative damage and increased anti-oxidative capability of liver cells by preventing the over production and accumulation of free radicals. In conclusion, the protective effects of SLE on stress-induced liver damage were confirmed, and the correlation between hepatoprotective and anti-stress effects of schisandra lignans was possible related to its alleviation on the malignant effects of stressors for bio-homeostasis, such as balance of oxidation and reduction in cells.
    Evidence-based Complementary and Alternative Medicine 01/2012; 2012:161062. · 1.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Icariin is known as an indicative constituent of the Epimedium genus, which has been commonly used in Chinese herbal medicine to enhance treat impotence and improve sexual function, as well as for several other indications for over 2000 years. In this study, we aimed to investigate the effects of icariin and its intestinal metabolites on the activities of human UDP-glucuronosyltransferase (UGT) activities. Using a panel of recombinant human UGT isoforms, we found that icariin exhibited potent inhibition against UGT1A3. It is interesting that the intestinal metabolites of icariin exhibited a different inhibition profile compared with icariin. Different from icariin, icariside II was a potent inhibitor of UGT1A4, UGT1A7, UGT1A9, and UGT2B7, and icaritin was a potent inhibitor of UGT1A7 and UGT1A9. The potential for drug interactions in vivo was also quantitatively predicted and compared. The quantitative prediction of risks indicated that in vivo inhibition against intestinal UGT1A3, UGT1A4, and UGT1A7 would likely occur after oral administration of icariin products.
    Evidence-based Complementary and Alternative Medicine 01/2012; 2012:395912. · 1.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: The elucidation of the toxicological mechanisms of herbal medicines is becoming more and more important with the increasing application of herbal medicines, for treatment of various diseases and the promotion of health. Furthermore, it is widely recognized that as herbal components undergo bioactivation, there is a critical need for a greater understanding of herbal toxicity induction. Areas covered: This article summarizes the current understanding of structural alerts present in herbal remedies as well as the herbs' and individuals' factors, complicating the interpretation of herbal toxicity via bioactivation. Medline (by means of PubMed up to July 2010) has been searched using proper relevant terms. The reader is provided with reported examples of herbal bioactivation based on toxicophores, which are summarized in an extended list. The article also discusses the factors which influence the herbal bioactivation study, including herbal complexity, competitive detoxification metabolism pathways as well as the individual and species difference of drug metabolizing enzymes and intestinal factors. Expert opinion: The early evaluation of the bioactivation potential of herbal components is helpful for providing alerts of herbal toxicity. However, the potential toxic effects should be considered in the context of the complex systems of herbs and the individual patient.
    Expert Opinion on Drug Metabolism &amp Toxicology 05/2011; 7(8):989-1007. · 2.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chlormadinone acetate (CMA), a derivative of 17-a-hydroxyprogesterone, has been widely used as an orally effective progestogen in hormone replacement therapy (HRT). Glucuronidation catalyzed by UDP-glucuronosyltransferases (UGTs) is one of the major steps responsible for the metabolism of many drugs, environmental chemicals and endogenous compounds. Pharmacokinetic behaviours of drugs could be altered by inhibition of these UGT isoforms, and the search for drugs that potentially inhibit these UGT isoforms is very significant from a clinical point of view. In the present study, inhibition of five important UGT isoforms in human liver (UGT1A1, 1A3, 1A6, 1A9 and 2B7) by CMA was investigated using 4-MU as nonspecific substrate and recombinant UGT isoforms as enzyme sources. The results showed that CMA exhibited inhibitory effects on UGT1A3 (IC50 = 8.6 +/- 1.4 microM) and UGT2B7 (IC50 = 14.2 +/- 3.8 microM), with other UGT isoforms negligibly influenced. Lineweaver-Burk and Dixon plots showed that CMA noncompetitively inhibited UGT1A3 and UGT2B7. The Ki value was calculated to be 36.9 microM and 4.1 microM for UGT1A3 and UGT2B7, respectively. Considering that UGT1A3 and UGT2B7 are involved in the metabolism of many drugs, special attentions should be paid when CMA was co-administered with the drugs which mainly underwent UGT1A3, 2B7-mediated metabolism.
    Pharmazie 03/2011; 66(3):212-5. · 0.96 Impact Factor

Publication Stats

74 Citations
57.64 Total Impact Points

Institutions

  • 2012–2014
    • Chinese Academy of Sciences
      • Dalian Institute of Chemical Physics
      Peping, Beijing, China
    • Dalian Institute of Chemical Physics
      Lü-ta-shih, Liaoning, China
  • 2011–2013
    • Shanghai Institute of Planned Parenthood Research
      Shanghai, Shanghai Shi, China
    • Northeast Institute of Geography and Agroecology
      • Dalian Institute of Chemical Physics
      Beijing, Beijing Shi, China
    • Shenyang Pharmaceutical University
      • Department of Traditional Chinese Medicine
      Shenyang, Liaoning, China
  • 2010
    • Jinan University (Guangzhou, China)
      Shengcheng, Guangdong, China