X Leverve

University of Nice-Sophia Antipolis, Nice, Provence-Alpes-Côte d'Azur, France

Are you X Leverve?

Claim your profile

Publications (222)627.27 Total impact

  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background This study aims to test the hypothesis whether lowering glycemia improves mitochondrial function and thereby attenuates apoptotic cell death during resuscitated murine septic shock. Methods Immediately and 6 h after cecal ligation and puncture (CLP), mice randomly received either vehicle or the anti-diabetic drug EMD008 (100 μg · g-1). At 15 h post CLP, mice were anesthetized, mechanically ventilated, instrumented and rendered normo- or hyperglycemic (target glycemia 100 ± 20 and 180 ± 50 mg · dL-1, respectively) by infusing stable, non-radioactive isotope-labeled 13C6-glucose. Target hemodynamics was achieved by colloid fluid resuscitation and continuous i.v. noradrenaline, and mechanical ventilation was titrated according to blood gases and pulmonary compliance measurements. Gluconeogenesis and glucose oxidation were derived from blood and expiratory glucose and 13CO2 isotope enrichments, respectively; mathematical modeling allowed analyzing isotope data for glucose uptake as a function of glycemia. Postmortem liver tissue was analyzed for HO-1, AMPK, caspase-3, and Bax (western blotting) expression as well as for mitochondrial respiratory activity (high-resolution respirometry). Results Hyperglycemia lowered mitochondrial respiratory capacity; EMD008 treatment was associated with increased mitochondrial respiration. Hyperglycemia decreased AMPK phosphorylation, and EMD008 attenuated both this effect as well as the expression of activated caspase-3 and Bax. During hyperglycemia EMD008 increased HO-1 expression. During hyperglycemia, maximal mitochondrial oxidative phosphorylation rate was directly related to HO-1 expression, while it was unrelated to AMPK activation. According to the mathematical modeling, EMD008 increased the slope of glucose uptake plotted as a function of glycemia. Conclusions During resuscitated, polymicrobial, murine septic shock, glycemic control either by reducing glucose infusion rates or EMD008 improved glucose uptake and thereby liver tissue mitochondrial respiratory activity. EMD008 effects were more pronounced during hyperglycemia and coincided with attenuated markers of apoptosis. The effects of glucose control were at least in part due to the up-regulation of HO-1 and activation of AMPK. Keywords: Gluconeogenesis; Glucose uptake; Glucose oxidation; Mitochondrial respiration; Apoptosis; AMPK; HO-1
    Intensive care medicine experimental. 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE: Preventive treatments of traumatic intracranial hypertension are not yet established. We aimed to compare the efficiency of half-molar sodium lactate (SL) versus saline serum solutions in preventing episodes of raised intracranial pressure (ICP) in patients with severe traumatic brain injury (TBI). METHODS: This was a double-blind, randomized controlled trial including 60 patients with severe TBI requiring ICP monitoring. Patients were randomly allocated to receive a 48-h continuous infusion at 0.5 ml/kg/h of either SL (SL group) or isotonic saline solution (control group) within the first 12 h post-trauma. Serial measurements of ICP, as well as fluid, sodium, and chloride balance were performed over the 48-h study period. The primary outcome was the number of raised ICP (≥20 mmHg) requiring a specific treatment. RESULTS: Raised ICP episodes were reduced in the SL group as compared to the control group within the 48-h study period: 23 versus 53 episodes, respectively (p < 0.05). The proportion of patients presenting raised ICP episodes was smaller in the SL group than in the saline group: 11 (36 %) versus 20 patients (66 %) (p < 0.05). Cumulative 48-h fluid and chloride balances were reduced in the SL group compared to the control group (both p < 0.01). CONCLUSION: A 48-h infusion of SL decreased the occurrence of raised ICP episodes in patients with severe TBI, while reducing fluid and chloride balances. These findings suggest that SL solution could be considered as an alternative treatment to prevent raised ICP following severe TBI.
    European Journal of Intensive Care Medicine 06/2013; · 5.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ethanol induces brain injury by a mechanism that remains partly unknown. Mitochondria play a key role in cell death processes, notably through the opening of the permeability transition pore (PTP). Here, we tested the effect of ethanol and PTP inhibitors on mitochondrial physiology and cell viability both in vitro and in vivo. Direct addition of ethanol up to 100 mM on isolated mouse brain mitochondria slightly decreased oxygen consumption but did not affect PTP regulation. In comparison, when isolated from ethanol-treated (two doses of 2 g/kg, 2 hours apart) 7-day-old mouse pups, brain mitochondria displayed a transient decrease in oxygen consumption but no change in PTP regulation or H2O2 production. Conversely, exposure of primary cultured astrocytes and neurons to 20 mM ethanol for 3 days led to a transient PTP opening in astrocytes without affecting cell viability, and to a permanent PTP opening in 10 to 20% neurons with the same percentage of cell death. Ethanol-treated mouse pups displayed a widespread caspase-3 activation in neurons but not in astrocytes, and dramatic behavioral alterations. Interestingly, two different PTP inhibitors (namely cyclosporin A and nortriptyline) prevented both ethanol-induced neuronal death in vivo and ethanol-induced behavioral modifications. We conclude that PTP opening is involved in ethanol-induced neurotoxicity in the mouse.
    Chemical Research in Toxicology 12/2012; · 3.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed at determining whether glucose-insulin-potassium (GIK) solutions modify the NADH/NAD(+) ratio during postischemic reperfusion and whether their cardioprotective effect can be attributed to this change in part through reduction of the mitochondrial reactive oxygen species (ROS) production. The hearts of 72 rats were perfused with a buffer containing glucose (5.5 mM) and hexanoate (0.5 mM). They were maintained in normoxia for 30 min and then subjected to low-flow ischemia (0.5% of the preischemic coronary flow for 20 min) followed by reperfusion (45 min). From the beginning of ischemia, the perfusate was subjected to various changes: enrichment with GIK solution, enrichment with lactate (2 mM), enrichment with pyruvate (2 mM), enrichment with pyruvate (2 mM) plus ethanol (2 mM), or no change for the control group. Left ventricular developed pressure, heart rate, coronary flow, and oxygen consumption were monitored throughout. The lactate/pyruvate ratio of the coronary effluent, known to reflect the cytosolic NADH/NAD(+) ratio and the fructose-6-phosphate/dihydroxyacetone-phosphate (F6P/DHAP) ratio of the reperfused myocardium, were evaluated. Mitochondrial ROS production was also estimated. The GIK solution improved the recovery of mechanical function during reperfusion. This was associated with an enhanced cytosolic NADH/NAD(+) ratio and reduced mitochondrial ROS production. The cardioprotection was also observed when the hearts were perfused with fluids known to increase the cytosolic NADH/NAD(+) ratio (lactate, pyruvate plus ethanol) compared with the other fluids (control and pyruvate groups). The hearts with a high mechanical recovery also displayed a low F6P/DHAP ratio, suggesting that an accelerated glycolysis rate may be responsible for increased cytosolic NADH production. In conclusion, the cardioprotection induced by GIK solutions could occur through an increase in the cytosolic NADH/NAD(+) ratio, leading to a decrease in mitochondrial ROS production.
    Journal of Applied Physiology 07/2012; 113(5):775-84. · 3.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inhibition of the mitochondrial permeability transition pore (PTP) has proved to be an effective strategy for preventing oxidative stress-induced cell death, and the pore represents a viable cellular target for drugs. Here, we report that inhibition of complex I by rotenone is more effective at PTP inhibition than cyclosporin A in tissues that express low levels of the cyclosporin A mitochondrial target, cyclophilin D; and, conversely, that tissues in which rotenone does not affect the PTP are characterized by high levels of expression of cyclophilin D and sensitivity to cyclosporin A. Consistent with a regulatory role of complex I in the PTP-inhibiting effects of rotenone, the concentrations of the latter required for PTP inhibition precisely match those required to inhibit respiration; and a similar effect is seen with the antidiabetic drug metformin, which partially inhibits complex I. Remarkably (i) genetic ablation of cyclophilin D or its displacement with cyclosporin A restored PTP inhibition by rotenone in tissues that are otherwise resistant to its effects; and (ii) rotenone did not inhibit the PTP unless phosphate was present, in striking analogy with the phosphate requirement for the inhibitory effects of cyclosporin A [Basso et al. (2008) J. Biol. Chem. 283, 26307-26311]. These results indicate that inhibition of complex I by rotenone or metformin and displacement of cyclophilin D by cyclosporin A affect the PTP through a common mechanism; and that cells can modulate their PTP response to complex I inhibition by modifying the expression of cyclophilin D, a finding that has major implications for pore modulation in vivo.
    Biochimica et Biophysica Acta 05/2012; 1817(9):1628-34. · 4.66 Impact Factor
  • Source
    Journal of Bioenergetics 04/2012; · 1.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The permeability transition pore (PTP) is a mitochondrial inner membrane channel involved in cell death. The inhibition of PTP opening has been proved to be an effective strategy to prevent cell death induced by oxidative stress. Several ubiquinone analogs are known to powerfully inhibit PTP opening with an effect depending on the studied cell line. Here, we have studied the effects of ubiquinone 0 (Ub(0)), ubiquinone 5 (Ub(5)) and ubiquinone 10 (Ub(10)) on PTP regulation, H(2)O(2) production and cell viability in U937 cells. We found that Ub(0) induced both PTP opening and H(2)O(2) production. Ub(5) did not regulate PTP opening yet induced H(2)O(2) production. Ub(10) potently inhibited PTP opening yet induced H(2)O(2) production. Both Ub(0) and Ub(5) induced cell death, whereas Ub(10) was not toxic. Moreover, Ub(10) prevented tert-butyl hydroperoxide-induced PTP opening and subsequent cell death. We conclude that PTP-inhibitor ubiquinone analogs are able to prevent PTP opening-induced cell death only if they are not toxic per se, which is the case when they have no or low pro-oxidant activity.
    Journal of Bioenergetics 01/2012; 44(1):207-12. · 1.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Excess reactive oxygen species (ROS) production is thought to play a key role in the loss of pancreatic β-cell number and/or function, in response to high glucose and/or fatty acids. However, contradictory findings have been reported showing that in pancreatic β cells or insulin-secreting cell lines, ROS are produced under conditions of either high or low glucose. Superoxide production was measured in attached INS1E cells as a function of glucose concentration, by following in real time the oxidation of dihydroethidine. Minimal values of superoxide production were measured at glucose concentrations of 5-20 mM, whereas superoxide generation was maximal at 0-1 mM glucose. Superoxide generation started rapidly (15-30 min) after exposure to low glucose and was suppressed by its addition within minutes. Superoxide was totally suppressed by rotenone, but not myxothiazol, suggesting a role for complex I in this process. Indirect evidence for mitochondrial ROS generation was also provided by a decrease in aconitase activity. Activation of AMPK, a cellular metabolic sensor, and its downstream target ACC by low glucose concentration was largely inhibited by addition of MnTBAP, a MnSOD and catalase mimetic that also totally suppressed superoxide production. Taken together, the data show that low glucose activates AMPK in a superoxide-dependent, AMP-independent way.
    Free Radical Biology & Medicine 10/2011; 52(1):142-50. · 5.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondria are most important organelles in the survival of eukaryotic aerobic cells because they are the primary producers of ATP, regulators of ion homeostasis or redox state, and producers of free radicals. The key role of mitochondria in the generation of primordial ATP for the survival and proliferation of eukaryotic cells has been proven by extensive biochemical studies. In this context, it is crucial to understand the complexity of the mitochondrial compartment and its functionality and to develop experimental tools allowing the assessment of its nature and its function and metabolism. This review covers the role of the mitochondria in the cell, focusing on its structure, the mechanism of the mitochondrial respiratory chain, the maintenance of the transmembrane potential and the production of reactive oxygen species. The main probes used for mitochondrial compartment monitoring are described. In addition, various applications using mitochondrial-specific probes are detailed to illustrate the potential of flow and image cytometry in the study of the mitochondrial compartment. This review contains a panel of tools to explore mitochondria and to help researchers design experiments, determine the approach to be employed, and interpret their results.
    Cytometry Part A 06/2011; 79(6):405-25. · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to determine the effects of cinnamon on glycogen synthesis, related gene expression, and protein levels in the muscle and liver using an animal model of insulin resistance, the high-fat/high-fructose (HF/HFr) diet-fed rat. Four groups of 22 male Wistar rats were fed for 12 weeks with (1) HF/HFr diet to induce insulin resistance, (2) HF/HFr diet containing 20 g cinnamon per kilogram of diet, (3) control diet, and (4) control diet containing 20 g cinnamon per kilogram of diet. In the liver, cinnamon added to the HF/HFr diet led to highly significant increases of liver glycogen. There were no significant changes in animals consuming the control diet plus cinnamon. In the liver, cinnamon also counteracted the decreases of the gene expressions due to the consumption of the HF/HFr diet for the insulin receptor, insulin receptor substrates 1 and 2, glucose transporters 1 and 2, and glycogen synthase 1. In muscle, the decreased expressions of these genes by the HF/HFr diet and glucose transporter 4 were also reversed by cinnamon. In addition, the overexpression of glycogen synthase 3β messenger RNA levels and protein observed in the muscle of HF/HFr fed rats was decreased in animals consuming cinnamon. These data demonstrate that, in insulin-resistant rats, cinnamon improves insulin sensitivity and enhances liver glycogen via regulating insulin signaling and glycogen synthesis. Changes due to cinnamon in control animals with normal insulin sensitivity were not significant.
    Metabolism: clinical and experimental 05/2011; 60(11):1590-7. · 3.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A high-fat diet affects liver metabolism, leading to steatosis, a complex disorder related to insulin resistance and mitochondrial alterations. Steatosis is still poorly understood since diverse effects have been reported, depending on the different experimental models used. We hereby report the effects of an 8 week high-fat diet on liver energy metabolism in a rat model, investigated in both isolated mitochondria and hepatocytes. Liver mass was unchanged but lipid content and composition were markedly affected. State-3 mitochondrial oxidative phosphorylation was inhibited, contrasting with unaffected cytochrome content. Oxidative phosphorylation stoichiometry was unaffected, as were ATPase and adenine nucleotide translocator proteins and mRNAs. Mitochondrial acylcarnitine-related H(2)O(2) production was substantially higher and the mitochondrial quinone pool was smaller and more reduced. Cellular consequences of these mitochondrial alterations were investigated in perifused, freshly isolated hepatocytes. Ketogenesis and fatty acid-dependent respiration were lower, indicating a lower β-oxidation rate contrasting with higher RNA contents of CD36, FABP, CPT-1, and AcylCoA dehydrogenases. Concomitantly, the cellular redox state was more reduced in the mitochondrial matrix but more oxidized in the cytosol: these opposing changes are in agreement with a significantly higher in situ mitochondrial proton motive force. A high-fat diet results in both a decrease in mitochondrial quinone pool and a profound modification in mitochondrial lipid composition. These changes appear to play a key role in the resulting inhibition of fatty acid oxidation and of mitochondrial oxidative-phosphorylation associated with an increased mitochondrial ROS production. Mitochondrial quinone pool could have prospects as a crucial event, potentially leading to interesting therapeutic perspectives.
    Journal of Hepatology 02/2011; 54(2):348-56. · 9.86 Impact Factor
  • Diabetes & Metabolism - DIABETES METAB. 01/2011; 37(1).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hyperglycemia is detrimental to β-cell viability, playing a major role in the progression of β-cell loss in diabetes mellitus. The permeability transition pore (PTP) is a mitochondrial channel involved in cell death. Recent evidence suggests that PTP inhibitors prevent hyperglycemia-induced cell death in human endothelial cells. In this work, we have examined the involvement of PTP opening in INS-1 cell death induced by high levels of glucose or fructose. PTP regulation was studied by measuring the calcium retention capacity in permeabilized INS-1 cells and by confocal microscopy in intact INS-1 cells. Cell death was analyzed by flow cytometry. We first reported that metformin and cyclosporin A (CsA) prevented Ca²+-induced PTP opening in permeabilized and intact INS-1 cells. We then showed that incubation of INS-1 cells in the presence of 30 mM glucose or 2.5 mM fructose induced PTP opening and led to cell death. As both metformin and CsA prevented glucose- and fructose- induced PTP opening, and hampered glucose- and fructose- induced cell death, we conclude that PTP opening is involved in high glucose- and high fructose- induced INS-1 cell death. We therefore suggest that preventing PTP opening might be a new approach to preserve β-cell viability.
    Cell Death & Disease 01/2011; 2:e134. · 6.04 Impact Factor
  • Source
    Jan Hruda, Vladimir Sramek, Xavier Leverve
    [Show abstract] [Hide abstract]
    ABSTRACT: The study was carried out to evaluate the effect of several substrates on oxidative stress induced apoptosis and in K-562 cells. Glucose at 5, 11 and 30 mM concentrations was tested, as well as 5 mM glutamine and 5 mM fructose. The cells were exposed to tert-butylhydroperoxide (tBH) and apoptotic cells were evaluated by flow cytometry with FITC-Annexin V and propidium iodide. The effect of glucose concentration on DNA damage was evaluated using hydrogen peroxide and electrophoretic "DNA comets" assay at 5 mM and 30 mM glucose concentrations. The exposure of cells to tBH resulted in increased number of apoptotic cells, and this effect was prevented by administration of an antioxidant - N-Acetyl cysteine. Rising concentrations of glucose added to the toxic effect of tBH; we also observed some toxic effect of fructose and no effect of glutamine. We found higher susceptibility to hydrogen peroxide induced DNA damage with 30 mM glucose concentration. Hyperglycemia increases the cell's susceptibility to oxidative stress and it also amplifies oxidative DNA damage. Glutamine - when used as a sole energetic substrate - showed no protective effect against oxidative stress.
    Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia 12/2010; 154(4):315-20. · 0.99 Impact Factor
  • Source
    Guillaume Vial, Hervé Dubouchaud, Xavier M Leverve
    [Show abstract] [Hide abstract]
    ABSTRACT: With a steadily increasing prevalence, insulin resistance (IR) is a major public health issue. This syndrome is defined as a set of metabolic dysfunctions associated with, or contributing to, a range of serious health problems. These disorders include type 2 diabetes, metabolic syndrome, obesity, and non-alcoholic steatohepatitis (NASH). According to the literature in the field, several cell types like β-cell, myocyte, hepatocyte and/or adipocyte, as well as related complex signaling environment involved in peripheral insulin sensitivity are believed to be central in this pathology. Because of the central role of the liver in the whole-body energy homeostasis, liver insulin sensitivity and its potential relationship with mitochondrial oxidative phosphorylation appear to be crucial. The following short review highlights how liver mitochondria could be implicated in IR and should therefore be considered as a specific therapeutic target in the future.
    Acta biochimica Polonica 11/2010; 57(4):389-92. · 1.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aging compromises restoration of the cardiac mechanical function during reperfusion. We hypothesized that this was due to an ampler release of mitochondrial reactive oxygen species (ROS). This study aimed at characterising ex vivo the mitochondrial ROS release during reperfusion in isolated perfused hearts of middle-aged rats. Causes and consequences on myocardial function of the observed changes were then evaluated. The hearts of rats aged 10- or 52-week old were subjected to global ischemia followed by reperfusion. Mechanical function was monitored throughout the entire procedure. Activities of the respiratory chain complexes and the ratio of aconitase to fumarase activities were determined before ischemia and at the end of reperfusion. H(2)O(2) release was also evaluated in isolated mitochondria. During ischemia, middle-aged hearts displayed a delayed contracture, suggesting a maintained ATP production but also an increased metabolic proton production. Restoration of the mechanical function during reperfusion was however reduced in the middle-aged hearts, due to lower recovery of the coronary flow associated with higher mitochondrial oxidative stress indicated by the aconitase to fumarase ratio in the cardiac tissues. Surprisingly, activity of the respiratory chain complex II was better maintained in the hearts of middle-aged animals, probably because of an enhanced preservation of its membrane lipid environment. This can explain the higher mitochondrial oxidative stress observed in these conditions, since cardiac mitochondria produce much more H(2)O(2) when they oxidize FADH(2)-linked substrates than when they use NADH-linked substrates. In conclusion, the lower restoration of the cardiac mechanical activity during reperfusion in the middle-aged hearts was due to an impaired recovery of the coronary flow and an insufficient oxygen supply. The deterioration of the coronary perfusion was explained by an increased mitochondrial ROS release related to the preservation of complex II activity during reperfusion.
    Age 09/2010; 33(3):321-36. · 6.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Polyphenols from cinnamon (CN) have been described recently as insulin sensitizers and antioxidants but their effects on the glucose/insulin system in vivo have not been totally investigated. The aim of this study was to determine the effects of CN on insulin resistance and body composition, using an animal model of the metabolic syndrome, the high fat/high fructose (HF/HF) fed rat. Four groups of 22 male Wistar rats were fed for 12 weeks with: (i) (HF/HF) diet to induce insulin resistance, (ii) HF/HF diet containing 20 g cinnamon/kg of diet (HF/HF + CN), (iii) Control diet (C) and (iv) Control diet containing 20 g cinnamon/kg of diet (C + CN). Data from hyperinsulinemic euglycemic clamps showed a significant decrease of the glucose infusion rates in rats fed the HF/HF diet. Addition of cinnamon to the HF/HF diet increased the glucose infusion rates to those of the control rats. The HF/HF diet induced a reduction in pancreas weight which was prevented in HF/HF+CN group (p<0.01). Mesenteric white fat accumulation was observed in HF/HF rats vs. control rats (p<0.01). This deleterious effect was alleviated when cinnamon was added to the diet. In summary, these results suggest that in animals fed a high fat/high fructose diet to induce insulin resistance, CN alters body composition in association with improved insulin sensitivity.
    Archives of Biochemistry and Biophysics 09/2010; 501(1):158-61. · 3.37 Impact Factor
  • J.-C. Orban, X. Leverve, C. Ichai
    [Show abstract] [Hide abstract]
    ABSTRACT: Lactate, an ubiquitous metabolite derives from glycolysis. Pyruvate is enzymatically reduced into lactate by the lacticodeshydrogenase. Lactate consumption results from pyruvate oxidation or gluconeogenesis, essentially by the liver. Lactatemia results from an equilibrium between its production and its consumption. Lactatemia does not reflect lactate turnover which may be accelerated or braked without any variation in lactatemia. Lactate has been considered for a long time as a final metabolite, at least useless if not toxic. As a shuttle implicated in various cycles (glucose-lactate Cori's cycle), lactate appears as an energy substrate used in various conditions. Indeed, Cori's cycle is essential for ATP production by erythrocytes, which do not contain mitochondrias. This cycle is also effective for skeletal muscles during exercise. Myocardium during ischemia-reperfusion or hypoxia, shifts its oxidative metabolism from free fatty acids to carbohydrates, especially lactate. Indeed, sodium lactate after cardiac surgery improves cardiac index. Lactate seems to be also implicated as an energy substrate in brain. Clinical studies have shown that sodium lactate infusion decreased intracranial hypertension and improved the neurological outcome of severe traumatic brain injury. This treatment was also able to improve the neurological recovery after hypoglycemia, which indicates clearly that brain can consume lactate to supply its energy demand.
    Réanimation. 09/2010; 19(5).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The antidiabetic drug metformin can diminish apoptosis induced by oxidative stress in endothelial cells and prevent vascular dysfunction even in nondiabetic patients. Here we tested whether it has a beneficial effect in a rat model of gentamicin toxicity. Mitochondrial analysis, respiration intensity, levels of reactive oxygen species, permeability transition, and cytochrome c release were assessed 3 and 6 days after gentamicin administration. Metformin treatment fully blocked gentamicin-mediated acute renal failure. This was accompanied by a lower activity of N-acetyl-beta-D-glucosaminidase, together with a decrease of lipid peroxidation and increase of antioxidant systems. Metformin also protected the kidney from histological damage 6 days after gentamicin administration. These in vivo markers of kidney dysfunction and their correction by metformin were complemented by in vitro studies of mitochondrial function. We found that gentamicin treatment depleted respiratory components (cytochrome c, NADH), probably due to the opening of mitochondrial transition pores. These injuries, partly mediated by a rise in reactive oxygen species from the electron transfer chain, were significantly decreased by metformin. Thus, our study suggests that pleiotropic effects of metformin can lessen gentamicin nephrotoxicity and improve mitochondrial homeostasis.
    Kidney International 02/2010; 77(10):861-9. · 8.52 Impact Factor

Publication Stats

4k Citations
627.27 Total Impact Points

Institutions

  • 2008–2013
    • University of Nice-Sophia Antipolis
      • Faculté de Médecine
      Nice, Provence-Alpes-Côte d'Azur, France
  • 1990–2013
    • University Joseph Fourier - Grenoble 1
      • • Laboratoire de Bioénergétique Fondamentale et Appliquée
      • • Laboratoire de Radiopharmaceutiques Biocliniques
      Grenoble, Rhône-Alpes, France
  • 2012
    • Udayana University
      Badung, Bali, Indonesia
  • 1998–2012
    • Claude Bernard University Lyon 1
      • Laboratoire d'informatique en images et systèmes d'information (LIRIS)
      Villeurbanne, Rhône-Alpes, France
  • 2007–2010
    • Unité Inserm U1077
      Caen, Lower Normandy, France
    • Universidad de Salamanca
      • Departamento de Fisiología y Farmacología
      Salamanca, Castile and Leon, Spain
    • National Institute of Chemical Physics and Biophysics
      Kolyvan, Harju, Estonia
  • 2007–2008
    • French National Institute for Agricultural Research
      Lutetia Parisorum, Île-de-France, France
  • 2006
    • Université Libre de Bruxelles
      • L. Deloyers Laboratory for Experimental Surgery
      Brussels, BRU, Belgium
  • 2005
    • French Institute of Health and Medical Research
      • Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA) U1055
      Paris, Ile-de-France, France
  • 2004
    • Universität Ulm
      Ulm, Baden-Württemberg, Germany
  • 2000–2004
    • Centre Hospitalier Universitaire de Caen
      Caen, Lower Normandy, France
    • CHU de Lyon - Groupement Hospitalier Edouard Herriot
      Lyons, Rhône-Alpes, France
  • 2003
    • Centre Hospitalier Universitaire de Liège
      Luik, Walloon Region, Belgium
  • 1978–2003
    • Centre Hospitalier Universitaire de Grenoble
      • Service de Réanimation Médicale
      Grenoble, Rhône-Alpes, France
  • 2001
    • NCI-Frederick
      Maryland, United States
  • 1999
    • University Hospital of Lausanne
      Lausanne, Vaud, Switzerland
  • 1997
    • Centre Hospitalier Privé Claude Galien
      Quincy, Île-de-France, France
  • 1985–1989
    • University of Amsterdam
      • Biochemistry and Metabolic Diseases
      Amsterdam, North Holland, Netherlands
  • 1984
    • University of Grenoble
      Grenoble, Rhône-Alpes, France