Wen-Wen Chou

Kaohsiung Medical University, Kao-hsiung-shih, Kaohsiung, Taiwan

Are you Wen-Wen Chou?

Claim your profile

Publications (12)45.8 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Backgrounds Chronic hepatitis C virus (HCV) infection has been associated with induction of microRNAs (miRNAs) in peripheral blood mononuclear cells (PBMC). We aimed to evaluate the role of PBMC-miRNAs in the treatment outcome to antiviral therapy for HCV genotype 1 (HCV-1) patients. Methods Treatment-naive chronic HCV-1 patients, including 13 in screening phase and 48 in validation phase, were treated with 48 weeks of peginterferon/ribavirin. The primary end-point was the achievement of a sustained virological response (SVR, HCV RNA undetectable during 24 weeks post-treatment follow-up). Expression profiling of PBMC-miRNAs was performed by quantitative PCR-based array in typical responders and null-responders. Then candidate PBMC-miRNAs were validated by quantitative PCR in an independent validation set. Results PBMC-miR-125b was significantly predictive of an SVR, with expression levels of 5.28-fold lower in sustained responders versus null-responders (p=0.0163). In multivariate analysis, PBMC-miR-125b was significantly associated with the achievement of SVR (per 2-fold decrease, odds ratio/95% confidence interval (OR/CI): 2.07/1.14-6.31) independent of sex, age and interleukin-28B genotype. In patients who did not achieve a rapid virological response (RVR, undetectable HCV RNA at treatment week 4), PBMC-miR-125b was the only predictive factor of an SVR (per 2-fold decrease, OR/CI: 2.07/1.14-6.31). However, the circulating and hepatic miR-125b did not show significant difference between responders and non-responders. Conclusions PBMC-miR-125b expression levels were inversely related to the achievement of an SVR in HCV-1 patients, independent of interleukin-28B genotype, and was the single predictor of SVR in non-RVR patients.
    Antiviral research 01/2014; · 3.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim: The present study aimed to investigate the regulation and involvement of miR-221 in the differentiation of human adipose tissue-derived mesenchymal stem cells (hASCs). The relationships between miR-221 and pro-inflammatory markers and adipokines were also explored. Methods: Eight adipose tissues were obtained from four obese (mean body mass index (BMI) =31.7 kg/m(2)) and four lean (mean BMI= 21.5 kg/m(2)) women. hASCs were induced to differentiate, and the related gene expression were measured in the hASC-differentiated adipocytes using real-time reverse transcriptase polymerase chain reaction (real-time RT-PCR). Results: During adipogenesis, miR-221 was significantly down-regulated; furthermore, miR-221 levels were lower in hASC-differentiated adipocytes from obese subjects than in the corresponding adipocytes from lean subjects. Higher TNF-α mRNA levels were associated with lower levels of miR-221. In addition, the miR-221 levels in the adipocytes were inversely correlated with BMI. Conclusion: Our results support the link between miR-221 and obesity development as well as obesity related inflammatory status.
    Cellular Physiology and Biochemistry 07/2013; 32(1):127-137. · 3.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ultraviolet (UV)-induced damage plays a major role in ocular diseases, such as cataracts and retinal degeneration. UVB may also cause retinal phototoxicity and photic retinopathy. In this study, we explored the effects of UVB on the cell cycle and the role of silent mating type information regulation 2 homolog 1 (SIRT1) in the UVB-induced damage. UVB dose-dependently suppressed the growth of retinal pigment epithelial (RPE) cells by activating the phosphatidylinositol 3-kinase (PI3K) pathway and triggering cell cycle arrest at the S phase. SIRT1, an NAD-dependent histone deacetylase, is involved in multiple biological processes, such as the stress response and the regulation of the cell cycle. However, its role in the effects of UVB on RPE cells is unclear. We showed that UVB down-regulates SIRT1 expression in a dose-dependent manner. Resveratrol, an SIRT1 activator, prevented the UVB-induced damage by inhibiting AKT and ERK phosphorylation. A specific PI3K inhibitor attenuated the UVB-induced ERK1/2 and p53 phosphorylation. Finally, UVB activated the PI3K/AKT/ERK pathway by reducing the expression of SIRT1 in ARPE-19 cells. Our study, therefore, illustrated the molecular mechanisms of UVB-induced phototoxicity and damage of RPE cells. SIRT1 and resveratrol may be significant regulators, protecting against UVB-induced injury.
    Toxicology in Vitro 05/2013; · 2.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Colorectal cancer (CRC) is associated with high recurrence and mortality. Because deregulation of microRNAs is associated with CRC development and recurrence, the expression levels of microRNAs can be a simple and reliable biomarker to detect postoperative early relapse, thereby helping physicians to treat high-risk patients more efficiently. We used microRNA arrays and observed that microRNA-93 had substantially different expression levels in early (recurrence within 12 months after surgery) and non-early relapse CRC patients. The replication study, which included 35 early relapse and 42 non-early relapse subjects, further confirmed overexpression of microRNA-93 in non-early relapse samples. The in vitro and in vivo effects of microRNA-93 were investigated by examining cell proliferation, migration and invasion, as well as cell cycles, target-gene expression and xenograft in null mice. Cellular studies showed that the overexpression of microRNA-93 inhibited colon cancer cell proliferation and migration but not invasion. The cell cycle studies also revealed that microRNA-93 caused an accumulation of the G2 population. However, microRNA-93 could not induce cell apoptosis or necrosis. Functional studies showed that microRNA-93 could suppress CCNB1 protein expression leading to cell cycle arrest in the G2 phase. Moreover, microRNA-93 repressed expression of ERBB2, p21 and VEGF, all of which are involved in cell proliferation. MicroRNA-93 also suppressed tumor growth in null mice. This study showed that microRNA-93 can inhibit tumorigenesis and reduce the recurrence of CRC; these findings may have potential clinical applications for predicting the recurrence of CRC.
    Carcinogenesis 05/2012; 33(8):1522-30. · 5.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We showed previously that single nucleotide polymorphism (SNP) rs662702 in PAX6 may be located in a microRNA-328 binding site that causes susceptibility to high myopia. Our study was done to elucidate the role of PAX6 and its relationship with microRNA-328 in myopia. A luciferase assay was used to confirm microRNA-328 binding to the PAX6 locus. Clones containing each allele of rs662702 were created and tested for their binding affinity to microRNA-328. Because a low level of PAX6 is a risk factor for myopia, we tested whether knockdown of PAX6 affects retinal pigment epithelial (RPE) cells and scleral cells, as well as expression of myopia-related genes. We also tested for the effect of retinoic acid (RA) on microRNA-328 expression, since RA-responsive elements are predicted to lie in the microRNA-328 promoter. MicroRNA-328 was shown to bind to the wild-type, but not mutant 3' untranslated region (UTR) of PAX6. The risk C allele of rs644242 had strong response to microRNA-328 but the protective T allele did not respond to microRNA-328. Down-regulation of PAX6 in RPE increased RPE proliferation, but reduced scleral cell proliferation. In addition, transforming growth factor (TGF)-β3 in the RPE and matrix malleoproteinase-2 (MMP2) in the sclera were increased, while collagen I and integrin β1 in the sclera were decreased. RA dose-dependently increased microRNA-328 expression and, in turn, suppressed PAX6 expression. We elaborated the relationship among myopia development, SNP rs662702, microRNA-328 and RA. The data imply that reduction of miR-328 and/or RA can be potential strategies for myopia prevention or treatment.
    Investigative ophthalmology & visual science 03/2012; 53(6):2732-9. · 3.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Estrogen receptor α (ERα) has been shown to protect against atherosclerosis. Methylation of the ERα gene can reduce ERα expression leading to a higher risk for cardiovascular disease. Recently, microRNAs have been found to regulate DNA methyltransferases (DNMTs) and thus control methylation status in several genes. We first searched for microRNAs involved in DNMT-associated DNA methylation in the ERα gene. We also tested whether statin and a traditional Chinese medicine (San-Huang-Xie-Xin-Tang, SHXXT) could exert a therapeutic effect on microRNA, DNMT and ERα methylation. The ERα expression was decreased and ERα methylation was increased in LPS-treated human aortic smooth muscle cells (HASMCs) and the aorta from rats under a high-fat diet. MicroRNA-152 was found to be down regulated in the LPS-treated HASMCs. We validated that microRNA-152 can knock down DNMT1 in HASMCs leading to hypermethylation of the ERα gene. Statin had no effect on microRNA-152, DNMT1 or ERα expression. On the contrary, SHXXT could restore microRNA-152, decrease DNMT1 and increase ERα expression in both cellular and animal studies. The present study showed that microRNA-152 decreases under the pro-atherosclerotic conditions. The reduced microRNA-152 can lose an inhibitory effect on DNA methyltransferase, which leads to hypermethylation of the ERα gene and a decrease of ERα level. Although statin can not reverse these cascade proatherosclerotic changes, the SHXXT shows a promising effect to inhibit this unwanted signaling pathway.
    PLoS ONE 01/2012; 7(1):e30635. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lectin-like oxidized LDL receptor-1 (LOX-1) is a surface scavenger receptor for oxidized low-density lipoprotein (oxLDL). Several transcription factors have been reported to regulate LOX-1 expression. MicroRNAs are small noncoding RNAs that control gene expression, but there have been no reports of LOX-1 expression being regulated by microRNAs. Because the microRNA let-7g has been predicted to bind to LOX-1 mRNA, we investigated whether let-7g can regulate LOX-1 expression. Our experiments first demonstrated that oxLDL can reduce let-7g expression. We later confirmed that there is a let-7g binding site on the 3'-untranslated region of LOX-1 mRNA. We showed that intracellular Ca(2+)-activated protein kinase C is involved in the oxLDL-LOX-1-let-7g pathway. Bioinformatics predicted that the let-7g promoter has a binding site for the transcriptional repressor OCT-1. We used a promoter assay and chromatin immunoprecipitation to confirm this binding. Consequently, knockdown of OCT-1 was found to increase let-7g expression. Transfection of let-7g inhibited oxLDL-induced LOX-1 and OCT-1 expression, cell proliferation and migration. Mice fed with a high-fat diet showed a decrease in let-7g and an increase in LOX-1 and OCT-1. A study on humans showed the serum levels of let-7g are lower in subjects with hypercholesterolemia compared with normal controls. Our findings identify a negative feedback regulation between let-7g and LOX-1, and indicate that let-7g could be a target to treat cardiovascular disease.
    Journal of Cell Science 12/2011; 124(Pt 23):4115-24. · 5.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ultraviolet B (UVB) radiation may cause the inflammation of retinal pigment epithelium (RPE) cells and play a role in development of age-related macular degeneration (AMD). The activation of the complement factor B (CFB) gene has been shown to be involved in formation of AMD. Here our results revealed that UVB induces IL-6/STAT3 signaling activation and the UVB-induced STAT3 is able to regulate the CFB expression in ARPE-19 cells. Tannic acid (TA) is a kind of water-soluble polyphenol and may have anti-inflammation effects. We also found that TA attenuates the UVB-induced IL-6 protein production, the STAT3 phosphorylation and the CFB expression. Taken together, these findings suggest UVB-induced inflammation of RPE can be mediated through the IL-6/STAT3/CFB pathway, and TA has a protected effect via the inhibition to the inflammatory response.
    Cellular Immunology 11/2011; 273(1):79-84. · 1.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Apelin, which is a newly identified adipokine, is related to obesity and insulin resistance. A positive correlation between plasma apelin concentrations and obesity traits was reported. We tested associations between apelin gene (APLN) polymorphisms, BMI, and waist circumference (WC) and compared APLN expression levels in cells of different genotypes. Four tagging single nucleotide polymorphisms (SNPs) and one promoter SNP were genotyped in 1627 Chinese subjects. Because APLN was located on the chromosome X, statistical analyses were conducted in a sex-specific manner. Adipocytes of different genotypes were derived from the omental fat tissue of 10 women. We treated the primary adipocytes with high glucose plus insulin because of a close relation between insulin resistance and obesity. SNP rs3115757 was significantly associated with BMI and WC in women. Compared with the CG or GG genotype, the CC genotype had an OR of 2.07 (95% CI: 1.23, 3.49) for having a high WC (P = 0.006) and an OR of 2.29 (95% CI: 1.25, 4.19) for having a BMI (in kg/m(2)) ≥27 (P = 0.007). None of the SNPs was associated with BMI or WC in men. In adipocytes that carried the CC genotype of rs3115757, APLN messenger RNA levels and protein concentrations were higher in cells treated with high glucose plus insulin than in those with normal glucose. There was no difference between the 2 conditions in adipocytes of the CG or GG genotype. Both association and functional studies suggested that APLN polymorphisms were associated with risks of obesity phenotypes.
    American Journal of Clinical Nutrition 09/2011; 94(3):921-8. · 6.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: San-huang-xie-xin-tang (SHXXT) is a traditional Chinese medicine and it has been shown to have an anti-inflammatory effect. Since inflammation is one of the major mechanisms of atherosclerosis, we aimed to investigate anti-atherosclerotic effect of SHXXT in human aortic smooth muscle cells (HASMCs). Human aortic smooth muscle cells (HASMCs) were used in the present study, and rendered atherosclerosis by adding lipopolysaccharides. We first tested the effects of SHXXT on HASMC migration and proliferation as they present the major morphological change of atherosclerosis. We also examined whether SHXXT can influence the production of several biomarkers of inflammation and atherosclerosis including reactive oxygen species (ROS), COX-2, ERK1/2, IL-1β, IL-6, IL-8 and MCP-1. Using the dimethyl-thiazol-diphenyltetrazoliumbromide (MTT) and wound repair assay, SHXXT was shown to significantly reduce HASMC proliferation and migration, respectively. From the fluorometric assay, SHXXT significantly reduced ROS production. SHXXT down regulated mRNA and protein levels for the COX-2 gene. In addition, phosphorylated ERK1/2 levels were suppressed by SHXXT suggesting HASMC division can be inhibited under pro-inflammatory condition. SHXXT significantly inhibited the production of IL-1β, IL-6, IL-8 and MCP-1 after LPS stimulation. Our results indicated that SHXXT can influence several mechanisms involved in atherosclerosis, which suggests that SHXXT may have a therapeutic potential for cardiovascular disease associated with atherosclerosis.
    Journal of ethnopharmacology 10/2010; 133(2):442-7. · 2.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Betel-quid use is associated with liver cancer whereas its constituent arecoline is cytotoxic, genotoxic, and induces p53-dependent p21(WAF1) protein expression in Clone-9 cells (rat hepatocytes). The ataxia telangiectasia mutated (ATM)/rad3-related (ATR)-p53-p21(WAF1) and the phosphatidylinositol-3-kinase (PI3K)-mammalian target of rapamycin (mTOR) pathways are involved in the DNA damage response and the pathogenesis of cancers. Thus, we studied the role of ATM/ATR and PI3K in arecoline-induced p53 and p21(WAF1) protein expression in Clone-9 cells. We found that arecoline (0.5 mM) activated the ATM/ATR kinase at 30 min. The arecoline-activated ATM/ATR substrate contained p-p53Ser15. Moreover, arecoline only increased the levels of the p-p53Ser6, p-p53Ser15, and p-p53Ser392 phosphorylated p53 isoforms among the known isoforms. ATM shRNA attenuated arecoline-induced p-p53Ser15 and p21(WAF1) at 24 h. Arecoline (0.5 mM) increased phosphorylation levels of p-AktSer473 and p-mTORSer2448 at 30-60 min. Dominant-negative PI3K plasmids attenuated arecoline-induced p21(WAF1), but not p-p53Ser15, at 24 h. Rapamycin attenuated arecoline-induced phosphrylated p-p53Ser15, but not p21(WAF1), at 24 h. ATM shRNA, but not dominant-negative PI3K plasmids, attenuated arecoline-induced p21(WAF1) gene transcription. We conclude that arecoline activates the ATM/ATR-p53-p21(WAF1) and the PI3K/Akt-mTOR-p53 pathways in Clone-9 cells. Arecoline-induced phosphorylated p-p53Ser15 expression is dependent on ATM whereas arecoline-induced p21(WAF1) protein expression is dependent on ATM and PI3K. Moreover, p21(WAF1) gene is transcriptionally induced by arecoline-activated ATM.
    Journal of Cellular Biochemistry 05/2009; 107(3):408-17. · 3.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Betel-quid use is associated with the risk of liver cirrhosis and hepatocellular carcinoma and arecoline, the major alkaloid of betel-quid, is hepatotoxic in mice. Therefore, we studied the cytotoxic and genotoxic effects of arecoline in normal rat hepatocytes (Clone-9 cells). Arecoline dose-dependently (0.1-1mM) decreased cell cycle-dependent proliferation while inducing DNA damage at 24h. Moreover, arecoline (1mM)-induced apoptosis and necrosis at 24h. Arecoline dose-dependently (0.1-0.5mM) increased transforming growth factor-beta (TGF-beta) mRNA, gene transcription and bioactivity and neutralizing TGF-beta antibody attenuated arecoline (0.5mM)-inhibited cell proliferation at 24h. Arecoline (0.5mM) also increased p21(WAF1) protein expression and p21(WAF1) gene transcription. Moreover, arecoline (0.5mM) time-dependently (8-24h) increased p53 serine 15 phosphorylation. Pifithrin-alpha (p53 inhibitor) and the loss of the two p53-binding elements in the p21(WAF1) gene promoter attenuated arecoline-induced p21(WAF1) gene transcription at 24h. Pifithrin-alpha also attenuated arecoline (0.5mM)-inhibited cell proliferation at 24h. We concluded that arecoline induces cytotoxicity, DNA damage, G(0)/G(1) cell cycle arrest, TGF-beta1, p21(WAF1) and activates p53 in Clone-9 cells. Moreover, arecoline-induced p21(WAF1) is dependent on p53 while arecoline-inhibited growth is dependent on both TGF-beta and p53.
    Toxicology 02/2008; 243(1-2):1-10. · 4.02 Impact Factor