Vladimir Zivkovic

University of Niš, Nisch, Central Serbia, Serbia

Are you Vladimir Zivkovic?

Claim your profile

Publications (44)39.9 Total impact

  • Source
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Extensive experimental evidence confirms the role of oxidative stress as a major contributor to the pathogenesis of acute kidney injury (AKI). However, less information is available on the evolution of prooxidant-antioxidant parameters from early to end-phase renal function decline in humans. This study aimed to determine the oxidative status in dynamic throughout the evolutionary phases of the disease. The study included patients with cardiovascular pathology and AKI hospitalized in the intensive care unit (n = 69) and age-matched healthy controls (n = 30). They were followed through three phases of acute kidney injury; first phase was the phase of diagnosis, which is characterized by oliguria/anuria, second phase was established diuresis, and third phase was the polyuric phase. In these phases of the disease, blood samples were taken from the patients for biochemical analysis. From the collected whole blood, we measured spectrophotometrically prooxidants: index of lipid peroxidation, measured as Thiobarbituric acid reactive substances (TBARS), nitrite (NO₂⁻), superoxide anion radical (O₂⁻) and hydrogen peroxide (H₂O₂), and antioxidants: activity of superoxide dismutase (SOD), catalase (CAT) and reduced glutathione (GSH) from erythrocyte lysate. Comparing the results of the three measurements, a significant difference was found in the levels of NO₂⁻ and GSH, both of which increased in the second phase (P < 0.05) and then decreased in the third phase, and a significant increase in TBARS, which was elevated in the second phase (P < 0.05) and did not change significantly until the third phase. Our results showed phase-dependent modification in 3 parameters of the oxidative status (TBARS, NO₂⁻ and GSH). Whether these changes contribute to the deterioration of renal function in AKI remains to be established.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Connection between oxidative stress and clinical outcome in acute ischemic stroke (AIS) has been poorly investigated. This study was aimed to assess redox state (through measurement of oxidative stress markers) of patients with acute ischemic stroke during different stages of follow-up period, and to find association between values of mentioned markers and clinical outcome. The investigation was conducted on 60 patients (both sexes, aged 75.90 ± 7.37 years) who were recruited in intensive care units at the Special Hospital for Cerebrovascular Diseases "Sveti Sava," Belgrade. After verification of AIS, patients were followed up in four interval of time: (1) at admission, (2) within 24 h after AIS, (3) within 72 h after AIS, and (4) 7 days after AIS. At these points of time, blood samples were taken for determination of oxidative stress parameters [index of lipid peroxidation (measured as TBARS), nitric oxide (NO) in the form of nitrite ([Formula: see text]), superoxide anion radical ([Formula: see text]), hydrogen peroxide (H2O2)], and enzymes of antioxidant defense system [superoxide dismutase (SOD) and catalase (CAT)] using spectrophotometer. Present study provides new insights into redox homeostasis during ischemic stroke which may be of interest in elucidation of molecular mechanisms involved in this life-threatening condition. Particular contribution of obtained results could be examination of connection between redox disruption and clinical outcome in these patients. In that sense, our finding have pointed out that [Formula: see text] and NO can serve as the most relevant adjuvant biomarkers to monitor disease progression and evaluate therapies.
    Molecular and Cellular Biochemistry 04/2015; 406(1-2):75-81. DOI:10.1007/s11010-015-2425-z · 2.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to determine oxidative stress (OS) parameters after testicular torsion/detorsion in adult rats. In this experimental study, male adult Wistar rats were divided into four groups, each consisting of seven animals: group I-one hour right testicular torsion with subsequent orchiectomy, group II-one hour right testicular torsion followed by detorsion, group III-unilateral right-sided orchiectomy without previous torsion and group IV-control. After 30 days, bilateral orchiectomies were performed in rats with both testes and unilateral orchiectomies in rats with single testicles. Parameters of OS were determined in testicular tissue and in plasma. Plasma concentrations of advanced oxidation protein products (AOPP) and thiobarbituric acid reactive substances (TBARS) were higher (p<0.05 and p<0.01, respectively), whilst the plasma concentration of the total sulfhydryl (T-SH)-groups was lower (p<0.05) in group I compared to the control group. Group II had higher plasma concentrations of AOPP compared to group IV (p<0.05), as well as significantly increased TBARS and decreased T-SH-group levels compared to groups III (p<0.05 and p<0.01, respectively) and IV (p<0.01, for both parameters). There were significant differences in OS markers between the ipsilateral and contralateral testis, as well as significant correlations among levels of both plasma and tissue markers of OS. The increase in TBARS levels seen throughout the experimental period indicated that OS development was caused by ischemia/reperfusion in the testicular tissue. The oxidant-antioxidant system of the testicular tissue was altered during torsion as well as detorsion.
    International journal of fertility & sterility 04/2015; 9(1):121-8. · 0.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of research was to assess exercise-induced changes in mechanics of hearts isolated from rats, as well as time-course of those changes. Wistar rats (n = 42) were divided into control, moderately trained (swimming 1 hour, 5 days a week for 9 or 12 weeks) and strenuously trained (swimming 2, 3 and 4 times a day for an hour in weeks 10, 11 and 12, respectively) groups. After sacrificing, hearts (weight: 1480.82 ± 145.38 mg) were isolated and perfused on a Langendorff apparatus. Coronary perfusion pressure (CPP) was gradually increased (from 40 to 120 cm H2O) in order to establish coronary autoregulation. Parameters of cardiac contractility were recorded: maximum and minimum rate of change of pressure in the left ventricle (dp/dt max and dp/dt min), systolic and diastolic left ventricular pressure (SLVP and DLVP), heart rate (HR) and coronary flow (CF). Nine weeks of moderate exercise induced slight depression of coronary function (decrease of dp/dt max, dp/dt min, SLVP and DLVP), while 3 additional weeks of moderate training improved hearts function, but not to the extent that the strenuous training program did. The results of our study add evidence about beneficial effects of regular moderate exercise on heart, and furthermore, show that exercising frequently, if the intensity stays within moderate range, may not have detrimental effects on cardiodynamics.
    General Physiology and Biophysics 03/2015; 34:301-310. DOI:10.4149/gpb_2015001 · 0.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In light of the limited data concerning the role of N-methyl-D-aspartate (NMDA) receptors in cardiac function, the aim of the present study was to determine the role of NMDA receptors in cardiac function, as well as the possible role played by the oxidative stress induced by the overstimulation of NMDA receptors in isolated rat heart. The hearts of male, Wistar albino rats (n = 24, 12 in each experimental group, BM 180–200 g) were retrogradely perfused at a constant perfusion pressure (70 cm H2O), using the Langendorff technique, and cardiodynamic parameters were determined during the subsequent administration of DL-homocysteine thiolactone (DL-Hcy TLHC) alone, the combination of DL-Hcy TLHC and dizocilpine (MK-801), and MK-801 alone. In the second experimental group, the order of the administration of each of the substances was reversed. The oxidative stress biomarkers, including thiobarbituric acid reactive substances (TBARS), NO2 −, O2 − and H2O2, were each determined spectrophotometrically. DL-Hcy TLHC and MK-801 depressed cardiac function. DL-Hcy TLHC decreased oxidative stress, a finding that contrasted with the results of the experiments in which MK-801 was administered first. The findings of this study were suggestive of the likely role played by NMDA receptors in the regulation of cardiac function and coronary circulation in isolated rat heart.
    Molecular and Cellular Biochemistry 03/2015; 401(1-2):97-105. DOI:10.1007/s11010-014-2296-8 · 2.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to compare protective effects of ischemic and potential protective effects of pharmacological preconditioning with omeprazole on isolated rat heart subjected to ischemia/reperfusion. The hearts of male Wistar albino rats were excised and perfused on a Langendorff apparatus. In control group (CG) after stabilization period, hearts were subjected to global ischemia (perfusion was totally stopped) for 20 minutes and 30 minutes of reperfusion. Hearts of group II (IPC) were submitted to ischemic preconditioning lasting 5 minutes before 20 minutes of ischemia and 30 minutes of reperfusion. In third group (OPC) hearts first underwent preconditioning lasting 5 minutes with 100μM omeprazole, and then submitted 20 minutes of ischemia and 30 minutes of reperfusion. Administration of omeprazole before ischemia induction had protective effect on myocardium function recovery especially regarding to values of systolic left ventricular pressure and dp/dt max. Also our findings are that values of coronary flow did not change between OPC and IPC groups in last point of reperfusion. Based on our results it seems that ischemic preconditioning could be used as first window of protection after ischemic injury especially because all investigated parameters showed continuous trend of recovery of myocardial function. On the other hand, preconditioning with omeprazole induced sudden trend of recovery with positive myocardium protection, although less effective than results obtained with ischemic preconditioning not withstand, we must consider that omeprazole may be used in many clinical circumstances where direct coronary clamping for ischemic preconditioning is not possible.
    Revista Brasileira de Cirurgia Cardiovascular 03/2015; 30(2):266-275. DOI:10.5935/1678-9741.20150020 · 0.63 Impact Factor
  • Source
  • Source
  • Source
  • Source
  • Source
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: One of the most common complications of diabetes mellitus is diabetic neuropathy. It may be provoked by metabolic and/or vascular factors, and depending on duration of disease, various layers of nerve may be affected. Our aim was to investigate influence of diabetes on the epineurial, perineurial, and endoneurial connective tissue sheaths. The study included 15 samples of sural nerve divided into three groups: diabetic group, peripheral vascular disease group, and control group. After morphological analysis, morphometric parameters were determined for each case using ImageJ software. Compared to the control group, the diabetic cases had significantly higher perineurial index (P < 0.05) and endoneurial connective tissue percentage (P < 0.01). The diabetic group showed significantly higher epineurial area (P < 0.01), as well as percentage of endoneurial connective tissue (P < 0.01), in relation to the peripheral vascular disease group. It is obvious that hyperglycemia and ischemia present in diabetes lead to substantial changes in connective tissue sheaths of nerve, particularly in peri- and endoneurium. Perineurial thickening and significant endoneurial fibrosis may impair the balance of endoneurial homeostasis and regenerative ability of the nerve fibers. Future investigations should focus on studying the components of extracellular matrix of connective tissue sheaths in diabetic nerves.
    BioMed Research International 07/2014; 2014:870930. DOI:10.1155/2014/870930 · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We estimated the influence of acute glucagon applications on 3H-histamine uptake by the isolated guinea-pig heart, during a single 3H-histamine passage through the coronary circulation, before and during anaphylaxis, and the influence of glucagon on level of histamine, NO, , and H2O2 in the venous effluent during anaphylaxis. Before anaphylaxis, glucagon pretreatment does not change 3H-histamine Umax and the level of endogenous histamine. At the same time, in the presence of glucagon, 3H-histamine Unet is increased and backflux is decreased when compared to the corresponding values in the absence of glucagon. During anaphylaxis, in the presence of glucagon, the values of 3H-histamine Umax and Unet are significantly higher and backflux is significantly lower in the presence of glucagon when compared to the corresponding values in the absence of glucagon. The level of endogenous histamine during anaphylaxis in the presence of glucagon (6.9–7.38 × 10−8 μM) is significantly lower than the histamine level in the absence of glucagon (10.35–10.45 × 10−8 μM). Glucagon pretreatment leads to a significant increase in NO release (5.69 nmol/mL) in comparison with the period before glucagon administration (2.49 nmol/mL). Then, in the presence of glucagon, level fails to increase during anaphylaxis. Also, our results show no significant differences in H2O2 levels before, during, and after anaphylaxis in the presence of glucagon, but these values are significantly lower than the corresponding values in the absence of glucagon. In conclusion, our results show that glucagon increases NO release and prevents the increased release of free radicals during anaphylaxis, and decreases histamine level in the venous effluent during cardiac anaphylaxis, which may be a consequence of decreased histamine release and/or intensified histamine capturing by the heart during anaphylaxis.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to assess the oxidative stress status in rheumatoid arthritis (RA) by measuring markers of free radical production, systemic activity of disease, and levels of antioxidant. 52 RA patients and 30 healthy controls were included in the study, and clinical examination and investigations were performed and disease activity was assessed. Peripheral blood samples were used for all the assays. We assessed the markers of oxidative stress, including plasma levels of index of lipid peroxidation-thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H2O2), superoxide anion radical (O2 (-)), nitric oxide (NO), and superoxide dismutase activity (SOD), catalase activity (CAT) and glutathione levels in erythrocytes. In the RA group, levels of H2O2, O2 (-), and TBARS were significantly higher than in controls (4.08 ± 0.31 vs. 2.39 ± 0.13 nmol/l, p < 0.01; 8.90 ± 1.28 vs. 3.04 ± 0.38 nmol/l, p < 0.01, 3.65 ± 0.55 vs. 1.06 ± 0.17 μmol/l, p < 0.01). RA patients had significantly increased SOD activity compared with healthy controls (2,918.24 ± 477.14 vs. 643.46 ± 200.63UgHbx103, p < 0.001). Patients had significantly higher levels of pro-oxidants (O2 (-), H2O2, and TBARS) compared to controls, despite significantly higher levels of SOD. Significant differences were also observed in serum levels of NO in patients with high-diseases activity. Our findings support an association between oxidative/nitrosative stress and RA. Stronger response in samples with higher diseases activity suggests that oxidative/nitrosative stress markers may be useful in evaluating the progression of RA as well as in elucidating the mechanisms of disease pathogenesis.
    Molecular and Cellular Biochemistry 03/2014; 391(1-2). DOI:10.1007/s11010-014-2006-6 · 2.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Considering the adverse effects of DL-homocysteine thiolactone hydrochloride (DL-Hcy TLHC) on vascular function and the possible role of oxidative stress in these mechanisms, the aim of this study was to assess the influence of DL-Hcy TLHC alone and in combination with specific inhibitors of important gasotransmitters, such as L-NAME, DL-PAG, and PPR IX, on cardiac contractility, coronary flow, and oxidative stress markers in an isolated rat heart. The hearts were retrogradely perfused according to the Langendorff technique at a 70 cm H2O and administered 10 μ M DL-Hcy TLHC alone or in combination with 30 μ M L-NAME, 10 μ M DL-PAG, or 10 μ M PPR IX. The following parameters were measured: dp/dt max, dp/dt min, SLVP, DLVP, MBP, HR, and CF. Oxidative stress markers were measured spectrophotometrically in coronary effluent through TBARS, NO2, O2 (-), and H2O2 concentrations. The administration of DL-Hcy TLHC alone decreased dp/dt max, SLVP, and CF but did not change any oxidative stress parameters. DL-Hcy TLHC with L-NAME decreased CF, O2 (-), H2O2, and TBARS. The administration of DL-Hcy TLHC with DL-PAG significantly increased dp/dt max but decreased DLVP, CF, and TBARS. Administration of DL-Hcy TLHC with PPR IX caused a decrease in dp/dt max, SLVP, HR, CF, and TBARS.
    11/2013; 2013:318471. DOI:10.1155/2013/318471
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite the widespread clinical use of cyclooxygenase (COX) inhibitors, dilemmas still exist about potential impact of these drugs on cardiovascular system. The present study was aimed to estimate the effects of different COX inhibitors (meloxicam, acetylsalicylic acid [ASA], and SC-560) on oxidative stress in isolated rat heart, with special focus on L-arginine/NO system. The hearts of male Wistar albino rats (total number n = 96, each group 12 rats, 8 weeks old, body mass 180-200 g) were retrogradely perfused according to the Langendorff technique at gradually increased perfusion pressure (40-120 cmH2O). After control experiments the hearts were perfused with the following drugs: 100 μmol/l ASA (Aspirin), alone or in combination with 30 μmol/l L-NAME, 0.3 μmol/l meloxicam (movalis) with or without 30 μmol/l L-NAME, 3 μmol/l meloxicam (alone or in combination with 30 μmol/l L-NAME), 30 μmol/l L-NAME, and administration of 0.25 μmol/l SC-560. In samples of coronary venous effluent the following oxidative stress markers were measured spectrophotometrically: index of lipid peroxidation (measured as thiobarbituric acid reactive substances [TBARS]), superoxide anion radical release (O2 (-)), and hydrogen peroxide (H2O2). While ASA was found to have an adverse influence on redox balance in coronary circulation, and coronary perfusion, meloxicam and SC-560 do not negatively affect the intact model of the heart. Furthermore, all effects were modulated by NOS inhibition. It seems that interaction between COX and L-arginine/NO system truly exists in coronary circulation, and can be one of the possible causes for achieved effects. That means: those effects induced by different inhibitors of COX are modulated by subsequent inhibition of NOS.
    Molecular and Cellular Biochemistry 06/2013; 381(1-2). DOI:10.1007/s11010-013-1712-9 · 2.39 Impact Factor
  • Medicinski pregled 01/2013; 66(9-10):401-405. DOI:10.2298/MPNS1310401D

Publication Stats

69 Citations
39.90 Total Impact Points

Institutions

  • 2014–2015
    • University of Niš
      • Department of Anatomy
      Nisch, Central Serbia, Serbia
  • 2010–2015
    • University of Kragujevac
      • • Faculty of Medical Sciences
      • • Department of Physiology
      Krabujevac, Central Serbia, Serbia