Victoria L Heath

University of Birmingham, Birmingham, ENG, United Kingdom

Are you Victoria L Heath?

Claim your profile

Publications (32)168.03 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Tumor endothelial specific expression of Robo4 in adults identifies this plasma membrane protein as an anti-cancer target for immunotherapeutic approaches, such as vaccination. In this report, we describe how vaccination against Robo4 inhibits angiogenesis and tumor growth. To break tolerance to the auto-antigen Robo4, mice were immunised with the extracellular domain of mouse Robo4, fused to the Fc domain of human immunoglobulin within an adjuvant. Vaccinated mice show a strong antibody response to Robo4, with no objectively detectable adverse effects on health. Robo4 vaccinated mice showed impaired fibrovascular invasion and angiogenesis in a rodent sponge implantation assay, as well as a reduced growth of implanted syngeneic Lewis lung carcinoma. The anti-tumor effect of Robo4 vaccination was present in CD8 deficient mice but absent in B cell or IgG1 knockout mice, suggesting antibody dependent cell mediated cytotoxicity as the anti-vascular/anti-tumor mechanism. Finally, we show that an adjuvant free soluble Robo4-carrier conjugate can retard tumor growth in carrier primed mice. These results point to appropriate Robo4 conjugates as potential anti-angiogenic vaccines for cancer patients.
    Angiogenesis 10/2014; · 4.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: RhoJ is a RhoGTPase expressed in endothelial cells and tumour cells which regulates cell motility, invasion, endothelial tube formation and focal adhesion numbers. This study aimed to further delineate the molecular function of RhoJ. Using timelapse microscopy RhoJ was found to regulate focal adhesion disassembly; siRNA-mediated knockdown of RhoJ increased focal adhesion disassembly time, while expression of an active mutant (daRhoJ) decreased it. Further, daRhoJ co-precipitated with the GIT-PIX complex, a regulator of focal adhesion disassembly. An interaction between daRhoJ and GIT1 was confirmed using yeast-2-hybrid, which depended on the Spa homology domain of GIT1. GIT1, GIT2, β-PIX and RhoJ all co-localised in focal adhesions and depended on each other for their recruitment to focal adhesions. Functionally, the GIT-PIX complex regulated endothelial tube formation, with knockdown of GIT1/2 or β-PIX phenocopying RhoJ knockdown. RhoJ knockout mice showed reduced tumour growth and diminished tumour vessel density, identifying a role for RhoJ in mediating tumour angiogenesis. These studies give novel insight into the molecular function of RhoJ in regulating cell motility and tumour vessel formation.
    Journal of cell science. 06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tetraspanins function as organizers of the cell surface by recruiting specific partner proteins into tetraspanin-enriched microdomains, which regulate processes such as cell adhesion, signalling and intracellular trafficking. Endothelial cells appear to express at least 23 of the 33 human tetraspanins, and a number of recent studies have demonstrated their importance in endothelial cell biology. Tetraspanin CD151 is essential for pathological angiogenesis, which may in part be due to regulation of its main partner proteins, the laminin-binding integrins α3β1, α6β1 and α6β4. CD9 and CD151 are essential for leucocyte recruitment during an inflammatory response, through the formation of pre-assembled nano-platforms containing the adhesion molecules ICAM-1 (intercellular adhesion molecule 1) and VCAM-1 (vascular cell adhesion molecule 1), which ultimately coalesce to form docking structures around captured leucocytes. Tetraspanin CD63 also facilitates leucocyte capture by promoting clustering of the adhesion molecule P-selectin. Finally, Tspan12 is required for blood vessel development in the eye, through regulation of Norrin-induced Frizzled-4 signalling, such that Tspan12 mutations can lead to human disease. Future studies on these and other endothelial tetraspanins are likely to provide further novel insights into angiogenesis and inflammation.
    Biochemical Society Transactions 12/2011; 39(6):1667-73. · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have in recent years described several endothelial-specific genes that mediate cell migration. These include Robo4 (roundabout 4), CLEC14A (C-type lectin 14A) and ECSCR (endothelial cell-specific chemotaxis regulator) [formerly known as ECSM2 (endothelial cell-specific molecule 2)]. Loss of laminar shear stress induces Robo4 and CLEC14A expression and an endothelial 'tip cell' phenotype. Low shear stress is found not only at sites of vascular occlusion such as thrombosis and embolism, but also in the poorly structured vessels that populate solid tumours. The latter probably accounts for strong expression of Robo4 and CLEC14A on tumour vessels. The function of Robo4 has, in the past, aroused controversy. However, the recent identification of Unc5B as a Robo4 ligand has increased our understanding and we hypothesize that Robo4 function is context-dependent. ECSCR is another endothelial-specific protein that promotes filopodia formation and migration, but, in this case, expression is independent of shear stress. We discuss recent papers describing ECSCR, including intracellular signalling pathways, and briefly contrast these with signalling by Robo4.
    Biochemical Society Transactions 12/2011; 39(6):1571-5. · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: RhoJ is an endothelially expressed member of the Cdc42 (cell division cycle 42) subfamily of small Rho GTPases. It is expressed in both the developing mammalian vasculature and the vascular beds of a number of adult tissues, with its expression regulated by the endothelial transcription factor ERG (ETS-related gene). RhoJ has been shown to regulate endothelial motility, tubulogenesis and lumen formation in vitro, and modulates the vascularization of Matrigel plugs in vivo. Both vascular endothelial growth factor and semaphorin 3E have been found to affect its activation. RhoJ has been shown to be a focal-adhesion-localized Rho GTPase which can modulate focal adhesion number, actomyosin contractility and activity of Cdc42 and Rac1. The present review discusses the biology of RhoJ with a focus on recent reports of its role in endothelial cells and angiogenesis.
    Biochemical Society Transactions 12/2011; 39(6):1606-11. · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RhoJ/TCL was identified by our group as an endothelial-expressed Rho GTPase. The aim of this study was to determine its tissue distribution, subcellular localization, and function in endothelial migration and tube formation. Using in situ hybridization, RhoJ was localized to endothelial cells in a set of normal and cancerous tissues and in the vasculature of mouse embryos; endogenous RhoJ was localized to focal adhesions by immunofluorescence. The proangiogenic factor vascular endothelial growth factor activated RhoJ in endothelial cells. Using either small interfering (si)RNA-mediated knockdown of RhoJ expression or overexpression of constitutively active RhoJ (daRhoJ), RhoJ was found to positively regulate endothelial motility and tubule formation. Downregulating RhoJ expression increased focal adhesions and stress fibers in migrating cells, whereas daRhoJ overexpression resulted in the converse. RhoJ downregulation resulted in increased contraction of a collagen gel and increased phospho-myosin light chain, indicative of increased actomyosin contractility. Pharmacological inhibition of Rho-kinase (which phosphorylates myosin light chain) or nonmuscle myosin II reversed the defective tube formation and migration of RhoJ knockdown cells. RhoJ is endothelial-expressed in vivo, activated by vascular endothelial growth factor, localizes to focal adhesions, regulates endothelial cell migration and tube formation, and modulates actomyosin contractility and focal adhesion numbers.
    Arteriosclerosis Thrombosis and Vascular Biology 03/2011; 31(3):657-64. · 6.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have applied search algorithms to expression databases to identify genes whose expression is restricted to the endothelial cell. Such genes frequently play a critical role in endothelial biology and angiogenesis. Two such genes are the roundabout receptor Robo4 and the ECSCR (endothelial-cell-specific chemotaxis regulator). Endothelial cells express both Robo1 and Robo4, which we have knocked down using siRNA (small interfering RNA) and then studied the effect in a variety of in vitro assays. Both Robo4 and Robo1 knockdown inhibited in vitro tube formation on Matrigel. Transfection of Robo4 into endothelial cells increased the number of filopodial extensions from the cell, but failed to do so in Robo1-knockdown cells. Separate immunoprecipitation studies showed that Robo1 and Robo4 heterodimerize. We conclude from this and other work that a heteroduplex of Robo1 and Robo4 signals through WASP (Wiskott-Aldrich syndrome protein) and other actin nucleation-promoting factors to increase the number of filopodia and cell migration. Knockdown of the transmembrane ECSCR protein in endothelial cells also reduced chemotaxis and impaired tube formation on Matrigel. Yeast two-hybrid analysis and immunoprecipitation studies showed that, in contrast with the roundabouts, ECSCR binds to the actin-modulatory filamin A. We conclude that all three of these genes are critical for effective endothelial cell migration and, in turn, angiogenesis.
    Biochemical Society Transactions 12/2009; 37(Pt 6):1214-7. · 2.59 Impact Factor
  • Victoria L Heath, Roy Bicknell
    [Show abstract] [Hide abstract]
    ABSTRACT: The growth and metastasis of solid tumors critically depends on their ability to develop their own blood supply, a process known as tumor angiogenesis. Over the past decade much work has been performed to understand this process, and modifying this process provides a key point of therapeutic intervention in the fight against cancer. This Review explores the development of anti-VEGF-based antiangiogenic therapies, of which there are currently three licensed for clinical use worldwide. Although originally anticipated to inhibit the growth of tumor vessels, the induction of vascular normalization caused by these approved agents has provided a novel means of effective delivery of known chemotherapeutic agents. The development of small molecules that target VEGF receptors has resulted in the generation of inhibitors with not only vascular activity but antitumor activity in certain cancers. This Review will address the current status of vascular-disrupting strategies, such as therapies designed to induce tumor collapse by selectively destroying existing tumor vessels. These therapies can be broadly divided into small-molecular-weight vascular-disrupting agents and ligand-directed approaches. We discuss the current status of development, drug mechanisms of actions, combination with conventional chemotherapy and radiotherapy, and potential future targets for therapeutic intervention.
    Nature Reviews Clinical Oncology 06/2009; 6(7):395-404. · 15.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to further elucidate the function of Roundabout proteins in endothelium. We show that both Robo1 and Robo4 are present in human umbilical vein endothelial cells (HUVECs) and have knocked expression down using small interfering RNA (siRNA) technology. Roundabout knockout endothelial cells were then studied in a variety of in vitro assays. We also performed a yeast 2-hybrid analysis using the intracellular domain of Robo4 as bait to identify interacting proteins and downstream signaling. Both Robo1 and Robo4 siRNA knockdown and transfection of Robo4-green fluorescent protein inhibited endothelial cell movement and disrupted tube formation on Matrigel. Consistent with a role in regulating cell movement, yeast 2-hybrid and glutathione-S-transferase pulldown analyses show Robo4 binding to a Wiskott-Aldrich syndrome protein (WASP), neural Wiskott-Aldrich syndrome protein, and WASP-interacting protein actin-nucleating complex. We have further shown that Robo1 forms a heterodimeric complex with Robo4, and that transfection of Robo4GFP into HUVECs induces filopodia formation. We finally show using Robo1 knockdown cells that Robo1 is essential for Robo4-mediated filopodia induction. Our results favor a model whereby Slit2 binding to a Robo1/Robo4 heterodimer activates actin nucleation-promoting factors to promote endothelial cell migration.
    The FASEB Journal 11/2008; 23(2):513-22. · 5.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Platelets are essential for wound healing and inflammatory processes, but can also play a deleterious role by causing heart attack and stroke. Normal platelet activation is dependent on tetraspanins, a superfamily of glycoproteins that function as 'organisers' of cell membranes by recruiting other receptors and signalling proteins into tetraspanin-enriched microdomains. However, our understanding of how tetraspanin microdomains regulate platelets is hindered by the fact that only four of the 33 mammalian tetraspanins have been identified in platelets. This is because of a lack of antibodies to most tetraspanins and difficulties in measuring mRNA, due to low levels in this anucleate cell. To identify potentially platelet-expressed tetraspanins, mRNA was measured in their nucleated progenitor cell, the megakaryocyte, using serial analysis of gene expression and DNA microarrays. Amongst 19 tetraspanins identified in megakaryocytes, Tspan9, a previously uncharacterized tetraspanin, was relatively specific to these cells. Through generating the first Tspan9 antibodies, Tspan9 expression was found to be tightly regulated in platelets. The relative levels of CD9, CD151, Tspan9 and CD63 were 100, 14, 6 and 2 respectively. Since CD9 was expressed at 49000 cell surface copies per platelet, this suggested a copy number of 2800 Tspan9 molecules. Finally, Tspan9 was shown to be a component of tetraspanin microdomains that included the collagen receptor GPVI (glycoprotein VI) and integrin alpha6beta1, but not the von Willebrand receptor GPIbalpha or the integrins alphaIIbbeta3 or alpha2beta1. These findings suggest a role for Tspan9 in regulating platelet function in concert with other platelet tetraspanins and their associated proteins.
    Biochemical Journal 10/2008; 417(1):391-400. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We aimed to characterize the expression and function of a novel transcript that bioinformatics analysis predicted to be endothelial specific, called endothelial-specific molecule-2 (ECSM2). A full-length cDNA was isolated and predicted ECSM2 to be a putative 205-amino acid transmembrane protein that bears no homology to any known protein. Quantitative polymerase chain reaction analysis in vitro and in situ hybridization analysis in vivo confirmed ECSM2 expression to be exclusively endothelial, and localization to the plasma membrane was shown. Knockdown of ECSM2 expression in human umbilical vein endothelial cells using siRNA resulted in both reduced chemotaxis and impaired tube formation on matrigel, a solubilized basement membrane, both processes involved in angiogenesis. A yeast 2 hybrid analysis using the ECSM2 intracellular domain identified filamin A as an interacting protein. This interaction was confirmed by precipitation of filamin-A from endothelial cell lysates by a GST-tagged intracellular domain of ECSM2. This study is the first to characterize a novel cell surface protein ECSM2 that regulates endothelial chemotaxis and tube formation, and interacts with filamin A. These studies implicate a role for ECSM2 in angiogenesis via modulation of the actin cytoskeleton.
    Arteriosclerosis Thrombosis and Vascular Biology 07/2008; 28(9):1640-6. · 6.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, differential gene expression analysis using complementary DNA (cDNA) libraries has been improved. Firstly by the introduction of an accurate method of assigning Expressed Sequence Tags (ESTs) to genes and secondly, by using a novel likelihood ratio statistical scoring of differential gene expression between two pools of cDNA libraries. These methods were applied to the latest available cell line and bulk tissue cDNA libraries in a two-step screen to predict novel tumour endothelial markers. Initially, endothelial cell lines were in silico subtracted from non-endothelial cell lines to identify endothelial genes. Subsequently, a second bulk tumour versus normal tissue subtraction was employed to predict tumour endothelial markers. From an endothelial cDNA library analysis, 431 genes were significantly up regulated in endothelial cells with a False Discovery Rate adjusted q-value of 0.01 or less and 104 of these were expressed only in endothelial cells. Combining the cDNA library data with the latest Serial Analysis of Gene Expression (SAGE) library data derived a complete list of 459 genes preferentially expressed in endothelium. 27 genes were predicted tumour endothelial markers in multiple tissues based on the second bulk tissue screen. This approach represents a significant advance on earlier work in its ability to accurately assign an EST to a gene, statistically measure differential expression between two pools of cDNA libraries and predict putative tumour endothelial markers before entering the laboratory. These methods are of value and available http://www.compbio.ox.ac.uk/data/diffex.html to researchers that are interested in the analysis of transcriptomic data.
    BMC Genomics 02/2008; 9:153. · 4.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The platelet surface is poorly characterized due to the low abundance of many membrane proteins and the lack of specialist tools for their investigation. In this study we identified novel human platelet and mouse megakaryocyte membrane proteins using specialist proteomics and genomics approaches. Three separate methods were used to enrich platelet surface proteins prior to identification by liquid chromatography and tandem mass spectrometry: lectin affinity chromatography, biotin/NeutrAvidin affinity chromatography, and free flow electrophoresis. Many known, abundant platelet surface transmembrane proteins and several novel proteins were identified using each receptor enrichment strategy. In total, two or more unique peptides were identified for 46, 68, and 22 surface membrane, intracellular membrane, and membrane proteins of unknown subcellular localization, respectively. The majority of these were single transmembrane proteins. To complement the proteomics studies, we analyzed the transcriptome of a highly purified preparation of mature primary mouse megakaryocytes using serial analysis of gene expression in view of the increasing importance of mutant mouse models in establishing protein function in platelets. This approach identified all of the major classes of platelet transmembrane receptors, including multitransmembrane proteins. Strikingly 17 of the 25 most megakaryocyte-specific genes (relative to 30 other serial analysis of gene expression libraries) were transmembrane proteins, illustrating the unique nature of the megakaryocyte/platelet surface. The list of novel plasma membrane proteins identified using proteomics includes the immunoglobulin superfamily member G6b, which undergoes extensive alternate splicing. Specific antibodies were used to demonstrate expression of the G6b-B isoform, which contains an immunoreceptor tyrosine-based inhibition motif. G6b-B undergoes tyrosine phosphorylation and association with the SH2 domain-containing phosphatase, SHP-1, in stimulated platelets suggesting that it may play a novel role in limiting platelet activation.
    Molecular &amp Cellular Proteomics 04/2007; 6(3):548-64. · 7.25 Impact Factor
  • Victoria Heath, Roy Bicknell
    Drug Discovery Today Therapeutic Strategies 01/2007; 4(4):209–210.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The differentiation of megakaryocytes is characterized by polyploidization and cytoplasmic maturation leading to platelet production. Studying these processes is hindered by the paucity of bone marrow megakaryocytes and their precursors. We describe a method for the expansion and purification of committed megakaryocyte progenitors and demonstrate their usefulness by studying changes in the expression of Ets and GATA family transcription factors throughout megakaryocytopoiesis. A two-step serum-free method was developed. Cells isolated using this method were analyzed for surface marker expression by flow cytometry, and for their ability to differentiate using single-cell culture. Purified progenitors were induced to differentiate and analyzed with respect to their ploidy by flow cytometry and expression of specific genes by RT-PCR. A population of Lin- c-kit+ CD45+ CD41+ CD31+ CD34low CD9low FcgammaRII/IIIlow Sca-1med/low committed megakaryocyte progenitors was purified. These cells could be differentiated efficiently, achieving ploidy of up to 128N. Analysis of RNA demonstrated the expected increases in expression of key megakaryocyte-associated genes. RT-PCR analysis also revealed that a range of Ets and GATA factors are expressed, their individual levels and patterns of expression varying widely. Surprisingly, we find that GATA-6 is specifically expressed in late differentiated megakaryocytes and has the potential to regulate megakaryocyte-expressed genes in cooperation with Ets factors. Purified primary megakaryocytic progenitors are able to differentiate as a cohort into fully mature megakaryocytes. The number of cells obtainable, and the synchrony of the differentiation process, facilitates analysis of the dynamics of molecular processes involved in megakaryocytopoiesis. The expression pattern of Ets and GATA family transcription factors reveals the complexity of the involvement of these key megakaryocytic regulators. The finding of GATA-6 expression and demonstration of its functional activity suggests a novel mechanism for the regulation of certain genes late in megakaryocytopoiesis.
    Experimental Hematology 06/2006; 34(5):654-63. · 2.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polyphosphoinositides (PPIn) are low-abundance membrane phospholipids that each bind to a distinctive set of effector proteins and, thereby, regulate a characteristic suite of cellular processes. Major functions of phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P(2)] are in membrane and protein trafficking, and in pH control in the endosome-lysosome axis. Recently identified PtdIns(3,5)P(2) effectors include a family of novel beta-propeller proteins, for which we propose the name PROPPINs [for beta-propeller(s) that binds PPIn], and possibly proteins of the epsin and CHMP (charged multi-vesicular body proteins) families. All eukaryotes, with the exception of some pathogenic protists and microsporidians, possess proteins needed for the formation, metabolism and functions of PtdIns(3,5)P(2). The importance of PtdIns(3,5)P(2) for normal cell function is underscored by recent evidence for its involvement in mammalian cell responses to insulin and for PtdIns(3,5)P(2) dysfunction in the human genetic conditions X-linked myotubular myopathy, Type-4B Charcot-Marie-Tooth disease and fleck corneal dystrophy.
    Trends in Biochemical Sciences 02/2006; 31(1):52-63. · 13.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Tec family of protein-tyrosine kinases (PTKs), that includes Tec, Itk, Btk, Bmx, and Txk, plays an essential role in phospholipase Cgamma (PLCgamma) activation following antigen receptor stimulation. This function requires activation of phosphatidylinositol 3-kinase (PI 3-kinase), which promotes Tec membrane localization through phosphatidylinositol 3,4,5-trisphosphate (PtdIns 3,4,5-P(3)) generation. The mechanism of negative regulation of Tec family PTKs is poorly understood. In this study, we show that the inositol 5' phosphatases SHIP1 and SHIP2 interact preferentially with Tec, compared with other Tec family members. Four lines of evidence suggest that SHIP phosphatases are negative regulators of Tec. First, SHIP1 and SHIP2 are potent inhibitors of Tec activity. Second, inactivation of the Tec SH3 domain, which is necessary and sufficient for SHIP binding, generates a hyperactive form of Tec. Third, SHIP1 inhibits Tec membrane localization. Finally, constitutively targeting Tec to the membrane relieves SHIP1-mediated inhibition. These data suggest that SHIP phosphatases can interact with and functionally inactivate Tec by de-phosphorylation of local PtdIns 3,4,5-P(3) and inhibition of Tec membrane localization.
    Journal of Biological Chemistry 01/2005; 279(53):55089-96. · 4.65 Impact Factor
  • Current topics in microbiology and immunology 02/2002; 266:23-39. · 4.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 1alpha,25-Dihydroxyvitamin D3 (vitD3) is an immunoregulatory hormone with beneficial effects on Th1 mediated autoimmune diseases. Although the inhibitory effects of vitD3 on macrophages and dendritic cells are well documented, any direct effects of vitD3 on Th cell development are not clearly defined. Using CD4(+)Mel14(+) T cells derived from mice on a BALB/c and a C57BL/6 genetic background we examined the effect of vitD3 on Th cell development. We demonstrated that vitD3 affects Th cell polarization by inhibiting Th1 (IFN-gamma production) and augmenting Th2 cell development (IL-4, IL-5, and IL-10 production). These effects were observed in cultures driven with splenic APC and Ag, as well as with anti-CD3 and anti-CD28 alone, indicating that CD4(+) cells can also be direct targets for vitD3. The enhanced Th2 development by vitD3 was found in both BALB/c and C57BL/6 mice. An increased expression of the Th2-specific transcription factors GATA-3 and c-maf correlated with the increased production of Th2 cytokines after vitD3 treatment. The vitD3-induced effects were largely mediated via IL-4, because neutralization of IL-4 almost completely abrogated the augmented Th2 cell development after vitD3 treatment. These findings suggest that vitD3 acts directly on Th cells and can, in the absence of APC, enhance the development of a Th2 phenotype and augment the expression of the transcription factors c-maf and GATA-3. Our findings suggest that the beneficial effects of vitD3 in autoimmune diseases and transplantation operate through prevention of strong Th1 responses via the action on the APC, while simultaneously directly acting on the T cell to enhance Th2 cell development.
    The Journal of Immunology 12/2001; 167(9):4974-80. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: TGF-beta plays an important role in immune regulation in vivo and affects T cell differentiation in vitro. Here we describe how TGF-beta modulates Th2 development in vitro and investigate its mechanisms of action. TGF-beta down-regulated Th2 development of naive CD4+ Mel-14high T cells derived from the DO11.10 ovalbumin-specific TCR-transgenic mouse, and this was observed both in cultures driven with anti-CD3 and anti-CD28 and with splenic APC and antigen. TGF-beta down-regulated GATA-3 expression in developing Th2 and these cells showed a diminished IL-4-induced STAT6 activation. We found, however, that naive cells driven in Th2 conditions with TGF-beta did not show a significantly decreased STAT6 activation, suggesting that TGF-beta inhibits Th2 development via a STAT6-independent mechanism.
    European Journal of Immunology 10/2000; 30(9):2639-49. · 4.97 Impact Factor

Publication Stats

1k Citations
168.03 Total Impact Points

Institutions

  • 2008–2011
    • University of Birmingham
      • Institute for Biomedical Research
      Birmingham, ENG, United Kingdom
    • University of Oxford
      • Weatherall Institute of Molecular Medicine
      Oxford, ENG, United Kingdom
  • 2009
    • University Hospitals Birmingham NHS Foundation Trust
      • Institute of Biomedical Research
      Birmingham, ENG, United Kingdom
  • 2000–2002
    • Palo Alto Institute for Research and Education
      Palo Alto, California, United States
  • 1999
    • Medical Research Council (UK)
      Londinium, England, United Kingdom