T Furuyama

Osaka University, Ōsaka-shi, Osaka-fu, Japan

Are you T Furuyama?

Claim your profile

Publications (45)100.23 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several reports have suggested that Foxo1, a key regulator in differentiation, growth and metabolism, is involved in pancreatic β-cell function. However, detailed analyses have been hampered by a lack of Foxo1-deficient β cells. To elucidate Foxo1's function in β cells, we produced a β-cell line with inducible Foxo1 deletion. We generated a conditional knockout mouse line, in which Cre recombinase deletes the Foxo1 gene. We then established a β-cell line from an insulinoma induced in this knockout mouse by the β-cell-specific expression of simian virus 40 T antigen. In this cell line, designated MIN6-Foxo1flox/flox, adenovirus-mediated Cre expression ablates the Foxo1 gene, generating MIN6-Foxo1-KO cells. Using these knockout and floxed cell lines, we found that Foxo1 ablation enhanced the glucose-stimulated insulin secretion (GSIS) at high glucose concentrations and enhanced β-cell proliferation. We also conducted DNA microarray analyses of MIN6-Foxo1-KO cells infected with either an adenovirus vector expressing a constitutively active FOXO1 or a control vector and identified several Foxo1-regulated genes, including some known to be related to β-cell function. These cells should be useful for further studies on Foxo1's roles in β-cells and may lead to novel strategies for treating the impaired insulin secretion in type 2 diabetes mellitus.
    Genes to Cells 07/2012; 17(9):758-67. · 2.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The specific functions of intrinsic regulators of OL differentiation are poorly understood. Sema4D, originally found as a negative regulator of axon guidance, is mainly expressed by oligodendrocytes in the postnatal brain, and our previous study revealed that the lack of Sema4D induced an increase in the number of oligodendrocytes in the cerebral cortex, suggesting that Sema4D may function as an intrinsic regulator of oligodendrocyte development. In this study, we assessed the effects of Sema4D deficiency and of the exogenous addition of Sema4D on oligodendrocyte differentiation. Sema4D deficiency induced an increase in the number of oligodendrocytes in the cerebral cortex at postnatal day 14 and later, without increase in the number of oligodendrocyte progenitor cells. This increase was also observed in cultured oligodendrocytes obtained from Sema4D-deficient mice. Then we investigated whether Sema4D deficiency can increase the proliferation of the progenitor cells or influence the apoptosis. Apoptotic oligodendrocytes were markedly reduced in number in the developing cerebral cortex and in cultured oligodendrocytes obtained from Sema4D-deficient mice, although no significant change was found in proliferation of oligodendrocyte progenitor cells. Exogenous addition of Sema4D prevented the oligodendrocytes from this reduction of apoptosis, and further enhanced apoptosis in oligodendrocytes. Thus, Sema4D may act as an intrinsic inhibitory regulator of oligodendrocyte differentiation by promoting apoptosis.
    Molecular and Cellular Neuroscience 12/2011; 49(3):290-9. · 3.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Semaphorins, a family of secreted and membrane-bound proteins, are known to function as repulsive axon guidance molecules. Sema4D, a class 4 transmembrane-type semaphorin, is expressed by oligodendrocytes in the central nervous system, but its role is unknown. In this study, the effects of Sema4D deficiency on oligodendrocytes were studied in intact and ischemic brains of adult mice. As observed in previous studies, Sema4D marked by beta-galactosidase in Sema4D mutant mice was localized exclusively on myelin-associated glycoprotein (MAG)-positive oligodendrocytes but not on NG2-positive oligodendrocyte progenitor cells (OPCs). Although there was no difference in the number of the latter cells between Sema4D-deficient and wild-type mice, the number of MAG-positive cells was significantly increased in the cerebral cortex of both nonischemic and postischemic brains of Sema4D-deficient mice. Cell proliferation, observed by using bromodeoxyuridine incorporation, was evident in the MAG-positive cells that developed after cerebral ischemia. These data indicate that Sema4D is involved in oligodendrogenesis during development and during recovery from ischemic injury.
    Journal of Neuroscience Research 06/2009; 87(13):2833-41. · 2.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Semaphorins are a group of secreted and membrane-associated molecules that play important roles in axon navigation. Several semaphorin family molecules are expressed in the pharyngeal arches and tooth germs. We analysed the expression of membrane-associated Semaphorin 4D (Sema4D) in tooth germs, and examined its potential role in regulating the differentiation of rat incisor pulp-derived cells in vitro. mRNA expression was examined by in situ hybridisation. The effects of Sema4D on rat pulp-derived cells were examined by adenovirus-mediated overexpression in vitro. Both epithelial and mesenchymal cells of tooth germs expressed Sema4D at the early bell stage. Later, the odontoblasts predominantly expressed Sema4D, while the epithelial expression greatly decreased. The overexpression of Sema4D in rat incisor pulp-derived cells strongly inhibited mineralisation. This inhibition was preceded by a reduction of collagen fibre production at the level of mRNA synthesis. These results indicate that Sema4D is expressed in both epithelial and mesenchymal cells of the tooth germs. Sema4D represses collagen synthesis of pulp-derived cells, indicating it might negatively regulate odontoblast differentiation.
    Archives of Oral Biology 02/2008; 53(1):27-34. · 1.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plexin-B1, Sema4D receptor, mediates retraction and extension signals in axon guidance by associating with PDZ-containing Rho guanine nucleotide exchange factors (PDZ-RhoGEFs) which can activate a small Rho GTPase RhoA. RhoA is implicated in spine formation by rearranging actin cytoskeleton. Exogenous application of Sema4D to cultured neurons caused activation of RhoA, increase of spine density and changes in spine shape. Sema4D-induced changes in spine density were blocked by either Rho-kinase (a downstream of RhoA, ROCK) inhibitor Y-27632 or by overexpression of plexin-B1 mutant lacking the C-terminus which no longer associates with PDZ-RhoGEFs. This study suggests that Sema4D-plexin-B1 play a crucial role in spine formation by regulating RhoA/ROCK pathway.
    Neuroscience Letters 12/2007; 428(1):1-6. · 2.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several semaphorins are thought to function as potent inhibitors of axonal growth. We have found that Sema4D stimulates axonal outgrowth of embryonic dorsal root ganglion (DRG) neurones in stead of retraction. Neutralizing antibodies to Sema4D inhibit this action. This action appears to differ slightly from that on PC12 cells, because DRG neurones respond to Sema4D without addition of nerve growth factor (NGF), while PC12 cells do not. On the other hand, it is blocked by deprivation of endogenous NGF with antibodies to NGF and also by Trk-inhibitor K252a, suggesting that endogenously produced-NGF and the activation of Trk receptor are required for Sema4D-action on DRG neurones. These indicate that neurite-outgrowth promoting actions of Sema4D are similar between DRG neurones and PC12 cells, since NGF-Trk signalling are required for these actions. Since Schwann cells can produce NGF, the contamination of these cells in our DRG culture might explain this action. In addition to plexin-B1 that is known as a Sema4D receptor, binding experiments indicate plexin-B2 as another receptor candidate for Sema4D. These plexins and Sema4D are expressed in embryonic DRGs. We suggest a new function of Sema4D as a neurite-outgrowth stimulating, autocrine/paracrine factor in embryonic sensory neurones.
    Genes to Cells 10/2004; 9(9):821-9. · 2.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Semaphorins provide crucial attractive and repulsive cues involved in axon guidance during neural development. Out of them, Semaphorin 4D (Sema4D) is enriched in the nervous and immune tissues, and acts as proliferative and survival factors of peripheral lymphocytes in the immune system, but is poorly understood in the nervous system. By using PC12 cells which are well known to differentiate into neural cells in response to nerve growth factor (NGF), we found that soluble forms of Sema4D had neurotrophic effects which were inhibited by neutralizing antibodies to Sema4D. Sema4D strikingly potentiated neurite outgrowth in the presence of 50 ng/ml NGF and increased sensitivity to NGF. Cells responded to very low concentrations of NGF in the presence of 1 nM Sema4D. Activation of following signal proteins, protein kinase C (PKC), L-type of voltage-dependent Ca(2+) channel, and phosphatidylinositol (PI) 3-kinase mediated neurotrophic neurite-outgrowth action of Sema4D. These findings suggest a new function of Sema4D as a neurotrophic signal in PC12 cells.
    Biochemical and Biophysical Research Communications 03/2003; 301(2):304-10. · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Rho family GTPase has been implicated in plexin-B1, a receptor for Semaphorin 4D (Sema4D), mediating signal transduction. Rho may also play a function in this signaling pathway as well as Rac, but the mechanisms for Rho regulation are poorly understood. In this study, we have identified two kinds of PDZ domain-containing Rho-specific guanine nucleotide exchange factors (RhoGEFs) as proteins interacting with plexin-B1 cytoplasmic domain. These PDZ domain-containing RhoGEFs showed significant homology to human KIAA0380 (PDZ-RhoGEF) and LARG (KIAA0382), respectively. Both KIAA0380 and LARG could bind plexin-B1 and a deletion mutant analysis of plexin-B1, KIAA0380 and LARG revealed that KIAA0380 and LARG bound plexin-B1 cytoplasmic tail through their PDZ domains. The tissue distribution analysis indicated that plexin-B1 was co-localized with KIAA0380 and LARG in various tissues. Immunocytochemical analysis showed that LARG was recruited to plasma membrane by plexin-B1. These results suggest that PDZ domain-containing RhoGEFs play a role in Sema4D-plexin-B1 mediating signal transduction.
    Biochemical and Biophysical Research Communications 10/2002; 297(1):32-7. · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Semaphorins are known to act as chemorepulsive molecules that guide axons during neural development. Sema4C, a group 4 semaphorin, is a transmembrane semaphorin of unknown function. The cytoplasmic domain of Sema4C contains a proline-rich region that may interact with some signaling proteins. In this study, we demonstrate that Sema4C is enriched in the adult mouse brain and associated with PSD-95 isoforms containing PDZ (PSD-95/DLG/ZO-1) domains, such as PSD-95/SAP90, PSD-93/chapsin110, and SAP97/DLG-1, which are concentrated in the post-synaptic density of the brain. In the neocortex, S4C is enriched in the synaptic vesicle fraction and Triton X-100 insoluble post-synaptic density fraction. Immunostaining for Sema4C overlaps that for PSD-95 in superficial layers I-IV of the neocortex. In neocortical culture, S4C is colocalized with PSD-95 in neurons, with a dot-like pattern along the neurites. Sema4C thus may function in the cortical neurons as a bi-directional transmembrane ligand through interacting with PSD-95.
    Journal of Biological Chemistry 04/2001; 276(12):9174-81. · 4.65 Impact Factor
  • Source
    Biochemical and Biophysical Research Communications 02/2001; 281(1):266. · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Semaphorin 4C (S4C, previously called M-SemaF) was recently identified as a brain rich transmembrane member of semaphorin family of the vertebrate. In the cytoplasmic domain of S4C there is a proline-rich region suggesting that the cytoplasmic domain may play an important role in Sema4C function. In this study, we have identified the cytoplasmic domain (cd) of M-SemaF(S4C)-associating protein with a Mr of 75 kDa, named SFAP75, from mouse brain. SFAP75 turned out to be the same as the recently reported neurite-outgrowth-related protein named Norbin. Deletion mutants analyses of S4C and SFAP75 revealed that the membrane-proximal region of S4Ccd binds to the intermediate region of SFAP75. Western blot and immunohistochemical analyses with anti-Sema4C and anti-SFAP75 antibodies indicated that S4C and SFAP75 were specially enriched in the brain with a similar distribution pattern to each other. These results suggest that S4C interacts with SFAP75 and plays a role in neural function in brain.
    Biochemical and Biophysical Research Communications 02/2001; 280(1):237-43. · 2.28 Impact Factor
  • Biochemical and Biophysical Research Communications 01/2001; 280(1). · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thirty-two protein phosphatase (PPase) genes were identified in the genome nucleotide sequence of Saccharomyces cerevisiae. We constructed S. cerevisiae disruptants for each of the PPase genes and examined their growth under various conditions. The disruptants of six putative PPase genes, i.e. of YBR125c, YCR079w, YIL113w, YJR110w, YNR022c and YOR090c, were created for the first time in this study. The glc7, sit4 and cdc14 disruptants were lethal in our strain background. The remaining 29 PPase gene disruptants were viable at 30 degrees C and 37 degrees C, but only one disruptant, yvh1, showed intrinsic cold-sensitive growth at 13 degrees C. Transcription of the YVH1 gene was induced at 13 degrees C, consistent with an idea that Yvh1p has a specific role for growth at a low temperature. The viable disruptants grew normally on nutrient medium containing sucrose, galactose, maltose or glycerol as carbon sources. The ppz1 disruptant was tolerant to NaCl and LiCl, while the cmp2 disruptant was sensitive to these salts, as reported previously, and none of the other viable PPase disruptants exhibited the salt sensitivity. When the viable disruptants were tested for sensitivity to drugs, i.e. benomyl, caffeine and hydroxyurea, ppz1 and ycr079w disruptants exhibited sensitivity to caffeine.
    Yeast 12/1999; 15(15):1669-79. · 1.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We recently showed that mouse semaphorin H (MSH), a secreted semaphorin molecule, acts as a chemorepulsive factor on sensory neurites. In this study, we found for the first time that MSH induces neurite outgrowth in PC12 cells in a dose-dependent manner. Comparison of Ras-mitogen-activated protein kinase (MAPK) signaling pathways between MSH and nerve growth factor (NGF) revealed that these pathways are crucial for MSH action as well as NGF. K-252a, an inhibitor of tyrosine autophosphorylation of tyrosine kinase receptors (Trks), did not inhibit the action of MSH, suggesting that MSH action occurs via a different receptor than NGF. L- and N-types of voltage-dependent Ca(2+) channel blockers, diltiazem and omega-conotoxin, inhibited MSH-induced neurite outgrowth and MAPK phosphorylation in a Ca(2+)-dependent manner. A transient elevation in intracellular Ca(2+) level was observed upon MSH stimulation. These findings suggest that extracellular Ca(2+) influx, followed by activation of the Ras-MAPK signaling pathway, is required for MSH induced PC12 cell neurite outgrowth.
    Journal of Biological Chemistry 11/1999; 274(42):29666-71. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the presenilin-1 (PS-1) and presenilin-2 (PS-2) genes account for the majority of cases of early-onset familial Alzheimer's disease (AD). Alternative splicing forms of the PS-1 and PS-2 gene products have previously been reported in fibroblast and brain tissue from both familial and sporadic AD patients, as well as from normal tissues and cell lines. We demonstrate here unusual alternative splicing of the PS-2 gene that leads to the generation of mRNA lacking exon 5 in human brain tissue. This product was more frequently detected in brain tissue from sporadic AD patients (70.0%; 21 of 30) than from normal age-matched controls (17.6%; three of 17). In cultured neuroblastoma cells, this splice variant was generated in hypoxia but not under other forms of cellular stress. Hypoxia-mediated induction of this splice variant was blocked by pretreatment of neuroblastoma cells with the protein synthesis inhibitor cycloheximide or antioxidants such as N-acetylcysteine and diphenyl iodonium, suggesting that hypoxia-mediated oxidant stress might, at least in part, underlie the alternative splicing of PS-2 mRNA through de novo protein synthesis. Furthermore, the stable transfectants of this splice variant produced the N-terminal part of PS-2 protein (15 kDa) and were more susceptible to cellular stresses than control transfectants. These results suggest the possibility that altered presenilin gene products in stress conditions may also participate in the pathogenesis of AD.
    Journal of Neurochemistry 07/1999; 72(6):2498-505. · 3.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mouse semaphorin H (M-semaH) was structurally similar to semaphorin III/D, a mammalian homologue of collapsin 1 which was identified as a collapsing factor for sensory nerves. In this study we investigated the expression patterns of M-semaH mRNA and the protein binding sites in the trunk of mouse embryos. M-semaH mRNA was expressed in the mesenchymal tissues surrounding each dorsal root ganglia. These tissues include the caudal sclerotome and perinotochordal mesenchyme, which were thought to express factors repulsive to axons. M-semaH binding was detected on the spinal nerves. We further investigated, using in vitro co-culture assay, whether M-semaH acted as a chemorepulsive molecule on sensory axons. The results suggested that M-semaH was a candidate for a chemorepellent expressed in the mesenchyme surrounding the sensory ganglia, which is involved in the axonal guidance mechanism of sensory nerves in the trunk.
    Neuroscience Research 05/1999; 33(4):269-74. · 2.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: DP5, which contains a BH3 domain, was cloned as a neuronal apoptosis-inducing gene. To confirm that DP5 interacts with members of the Bcl-2 family, 293T cells were transiently co-transfected with DP5 and Bcl-xl cDNA constructs, and immunoprecipitation was carried out. The 30-kDa Bcl-xl was co-immunoprecipitated with Myc-tagged DP5, suggesting that DP5 physically interacts with Bcl-xl in mammalian cells. Previously, we reported that DP5 is induced during neuronal apoptosis in cultured sympathetic neurons. Here, we analyzed DP5 gene expression and the specific interaction of DP5 with Bcl-xl during neuronal death induced by amyloid-beta protein (A beta). DP5 mRNA was induced 6 h after treatment with A beta in cultured rat cortical neurons. The protein encoded by DP5 mRNA showed a specific interaction with Bcl-xl. Induction of DP5 gene expression was blocked by nifedipine, an inhibitor of L-type voltage-dependent calcium channels, and dantrolene, an inhibitor of calcium release from the endoplasmic reticulum. These results suggested that the induction of DP5 mRNA occurs downstream of the increase in cytosolic calcium concentration caused by A beta. Moreover, DP5 specifically interacts with Bcl-xl during neuronal apoptosis following exposure to A beta, and its binding could impair the survival-promoting activities of Bcl-xl. Thus, the induction of DP5 mRNA and the interaction of DP5 and Bcl-xl could play significant roles in neuronal degeneration following exposure to A beta.
    Journal of Biological Chemistry 04/1999; 274(12):7975-81. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Semaphorins constitute a large family of secreted and cell-surfaced proteins that appear to function as chemorepellents to guide axons. We examined the expression pattern of M-semaH mRNA in the inner ear of mouse fetuses by in situ hybridization histochemistry. M-semaH mRNA expression was high in the endolymphatic sac involved in endolymph homeostasis. It was also high in the semicircular ducts except for the crista ampullaris, whereas no expression was detected in the epithelium of cochlear ducts.
    Neuroscience Letters 03/1999; 261(1-2):127-9. · 2.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Semaphorins/collapsins, a family of genes with a semaphorin domain conserved from insects through to mammals, are believed to be involved in axon guidance during neuronal development. We report the expression patterns of mouse semaphorin messenger RNAs. Among secreted semaphorins, mouse semaphorin H is structurally most similar to semaphorin III/D, the first semaphorin identified as a collapsing factor for sensory axons. However, its expression patterns apparently differ from those of semaphorin III/D. The messenger RNAs are distributed in the brain widely but unevenly during development, in particular, in the main olfactory bulb, hippocampus and pontine nucleus. In the trunk, the expression level is high in mesodermal tissues surrounding the dorsal root ganglia, while it is low in the spinal cord. Moreover, we examined whether this molecule has activity to collapse growth cones of sensory neurons, as well as semaphorin III/D. Mouse semaphorin H collapsed growth cones of sensory neurons of the dorsal root ganglion in a dose-dependent manner, and anti-neuropilin antibodies inhibited this activity. Taken together, these results suggest that mouse semaphorin H can function as a chemorepellent to guide sensory peripheral nerves, most likely via neuropilin as a receptor.
    Neuroscience 02/1999; 93(1):401-8. · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Copper homeostasis in the brain must be strictly maintained, since copper is an essential trace element and is potentially toxic. To understand the mechanism of copper homeostasis in the brain, we cloned several mouse homologues of copper trafficking genes and performed in situ hybridization histochemistry. mCTR1, mATX1, and mATP7a were highly expressed in the choroid plexus, indicating that the choroid plexus uses the trafficking pathway from uptake to efflux to transport copper to the cerebrospinal fluids. We suggest that these genes may regulate copper concentration in the brain through the choroid plexus.
    Neuroreport 11/1998; 9(14):3259-63. · 1.40 Impact Factor

Publication Stats

1k Citations
100.23 Total Impact Points

Institutions

  • 1996–2011
    • Osaka University
      • • School of Health Sciences
      • • Graduate School of Dentistry
      • • School of Medicine
      • • Division of Neuroscience
      Ōsaka-shi, Osaka-fu, Japan
  • 1993–2007
    • Osaka City University
      Ōsaka, Ōsaka, Japan