Steven Declerck

Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Gelderland, Netherlands

Are you Steven Declerck?

Claim your profile

Publications (93)243.65 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increased productivity due to nutrient enrichment is hypothesized to affect density-dependent processes, such as transmission success of horizontally transmitting parasites. Changes in nutrient availability can also modify the stoichiometry and condition of individual hosts, which may affect their susceptibility for parasites as well as the growth conditions for parasites within the host. Consequently, if not balanced by increased host immuno-competence or life history responses, changes in the magnitude of parasite effects with increasing nutrient availability are expected. If these parasite effects are host-species specific, this may lead to shifts in the host community structure. We here used the Daphnia- parasite model system to study the effect of nutrient enrichment on parasite-mediated competition in experimental mesocosms. In the absence of parasites, D. magna was competitively dominant to D. pulex at both low and high nutrient levels. Introduction of parasites resulted in infections of D. magna, but not of D. pulex and, as such, reversed the competitive hierarchy between these two species. Nutrient addition resulted in an increased prevalence and infection intensity of some of the parasites on D. magna. However, there was no evidence that high nutrient levels enhanced negative effects of parasites on the hosts. Costs associated with parasite infections may have been compensated by better growth conditions for D. magna in the presence of high nutrient levels.
    Ecology 05/2015; 96(5):1421-1430. DOI:10.1890/14-1167.1 · 5.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Humans alter biogeochemical cycles of essential elements such as phosphorus (P). Prediction of ecosystem consequences of altered elemental cycles requires integration of ecology, evolutionary biology and the framework of ecological stoichiometry. We studied micro-evolutionary responses of a herbivorous rotifer to P-limited food and the potential consequences for its population demography and for ecosystem properties. We subjected field-derived, replicate rotifer populations to P-deficient and P-replete algal food, and studied adaptation in common garden transplant experiments after 103 and 209 days of selection. When fed P-limited food, populations with a P-limitation selection history suffered 37% lower mortality, reached twice the steady state biomass, and reduced algae by 40% compared to populations with a P-replete selection history. Adaptation involved no change in rotifer elemental composition but reduced investment in sex. This study demonstrates potentially strong eco-evolutionary feedbacks from shifting elemental balances to ecosystem properties, including grazing pressure and the ratio of grazer:producer biomass. © 2015 The Authors Ecology Letters published by John Wiley & Sons Ltd and CNRS.
    Ecology Letters 04/2015; 18(6). DOI:10.1111/ele.12436 · 13.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Much information is available on community composition and abundance of submerged macrophytes in North temperate lakes, including their response to variation in environmental variables. Less is known about macrophytes in other climate regions. We studied 98 shallow lakes distributed in three different European latitudinal regions. The lakes were selected along mutually independent gradients of macrophyte coverage and total phosphorus and were sampled monthly from May to October for water chemistry and physical variables.Wetested for changes in the impact of selected environmental variables on the macrophyte assemblage, coverage and richness in the three regions. Coverage was measured along transects during July/August and June in the northern/central and southern European lakes, respectively. Correspondence Discriminant Analysis was used to detect for differences in macrophyte composition among different regions, and univariate regression trees were used to detect relationships between environmental variables and macrophyte coverage and richness. In the northern lakes, the coverage was mainly related to chlorophyll a followed by pH, and richness was related to Secchi depth and chlorophyll a. In the southern lakes, pH was the key environmental variable for both coverage and richness. North–south differences may be of relevance for determining management strategies related to global climate change.
    Hydrobiologia 02/2015; 744:49-61. DOI:10.1007/s10750-014-2055-6 · 2.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 1. Asian topmouth gudgeon Pseudorasbora parva has been recognized as a highly invasive cyprinid fish species in Europe that may present risk to native fish communities. 2. The present study aimed to investigate whether a native piscivorous fish, pike Esox lucius, is able to reduce the establishment success and invasiveness of topmouth gudgeon in shallow ponds. A large-scale, replicated whole-pond experiment was performed in which ponds were spontaneously colonized by topmouth gudgeon and exposed to experimental native fish communities with and without pike. 3. The results of the present study provide evidence for strong negative effects of pike stocking on the abundance and biomass of topmouth gudgeon, while no effects on native fish species were found. The present study suggests that the presence of native pike can considerably enhance the biotic resistance of fish communities against invasion by topmouth gudgeon. 4. It is argued that the resistance of fish communities against invasion by exotic species may in some cases be enhanced by management strategies that reinforce the presence and abundance of pike.
    Aquatic Conservation Marine and Freshwater Ecosystems 02/2015; 25(1). DOI:10.1002/aqc.2479 · 1.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, community ecologists are focusing on the relative importance of local environmental factors and proxies to dispersal limitation to explain spatial variation in community structure. Albeit less explored, temporal processes may also be important in explaining species composition variation in metacommunities occupying dynamic systems. We aimed to evaluate the relative role of environmental, spatial and temporal variables on the metacommunity structure of different organism groups in the Upper Paraná River floodplain (Brazil). We used data on macrophytes, fish, benthic macroinvertebrates, zooplankton, periphyton, and phytoplankton collected in up to 36 habitats during a total of eight sampling campaigns over two years. According to variation partitioning results, the importance of predictors varied among biological groups. Spatial predictors were particularly important for organisms with comparatively lower dispersal ability, such as aquatic macrophytes and fish. On the other hand, environmental predictors were particularly important for organisms with high dispersal ability, such as microalgae, indicating the importance of species sorting processes in shaping the community structure of these organisms. The importance of watercourse distances increased when spatial variables were the main predictors of metacommunity structure. The contribution of temporal predictors was low. Our results emphasize the strength of a trait-based analysis and of better defining spatial variables. More importantly, they supported the view that "all-or- nothing" interpretations on the mechanisms structuring metacommunities are rather the exception than the rule.
    PLoS ONE 10/2014; 9(10). DOI:10.1371/journal.pone.0111227 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The changes in species composition between habitat patches (beta diversity) are likely related to a number of factors, including environmental heterogeneity, connectivity, disturbance and productivity. Here, we used data from aquatic environments in five Brazilian regions over two years and two seasons (rainy and dry seasons or high and low water level periods in floodplain lakes) in each year to test hypotheses underlying zooplankton beta diversity variation. The regions present different levels of hydrological connectivity, where three regions present lakes that are permanent and connected with the main river, while the water bodies of the other two regions consist of permanent lakes and temporary ponds, with no hydrological connections between them. We tested for relationships between zooplankton beta diversity and environmental heterogeneity, spatial extent, hydrological connectivity, seasonality, disturbance and productivity. Negative relationships were detected between zooplankton beta diversity and both hydrological connectivity and disturbance (periodic dry-outs). Hydrological connectivity is likely to affect beta diversity by facilitating dispersal between habitats. In addition, the harsh environmental filter imposed by disturbance selected for only a small portion of the species from the regional pool that were able to cope with periodic dry-outs (e.g., those with a high production of resting eggs). In summary, this study suggests that faunal exchange and disturbance play important roles in structuring local zooplankton communities.
    PLoS ONE 10/2014; 9(10):e109581. DOI:10.1371/journal.pone.0109581 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 1. In semi-arid regions, the construction of small reservoirs is important in alleviating water shortage, although many have poor water quality with high turbidity and dense blooms of algae and cyanobacteria, and there are large differences in the ecology of such reservoirs. 2. We took advantage of two exceptionally dry years in northern Ethiopia to study the effect of a dry period and the associated fish kills on reservoir ecology and water quality. We studied 13 reservoirs, seven of which dried up in 2009. Four of the latter dried up again in 2010. We monitored the ecology of these reservoirs from 2009 to 2011, hypothesising that the pattern of reservoir drying would explain ecological differences among them. 3. Reservoirs that refilled after drying had a significantly lower fish biomass, lower biomass of phytoplankton (expressed as chlorophyll-a) and cyanobacteria (Microcystis), clearer water, greater macrophyte cover and lower nutrient concentrations than reservoirs that did not dry. Although the differences in water quality were most striking in the wet season after a drying event, there were persistent effects on reservoir ecology. The three categories of reservoirs we distinguished, based on their behaviour in 2009 and 2010, also showed differences in 2004, a year during which none of the reservoirs dried out. While drying evidently results in better water quality, we could not disentangle the effects of drying per se from that of reductions in fish biomass. The total combined effect was highly significant in all 3 years, whereas the separate effects of drying and loss of fish were only significant in 2004. 4. Our results suggest that differences in water quality and ecology among reservoirs depend on their propensity to dry out. Drying might be used as a restoration measure to reduce potentially harmful cyanobacterial blooms in reservoirs. Keywords: Ethiopia, fish biomass, Microcystis, reservoir ecology, water clarity
    8th International Shallow Lakes Conference,, Antalya, Turkey; 10/2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Riverine fish that colonize reservoirs can have a strong influence on the ecology of these systems. To understand this impact, it is important to know what they feed upon. In the reservoirs, they are exposed to different food sources compared to the riverine environment. We studied diet of 404 specimens belonging to two species of the riverine cyprinid genus Garra (G. blanfordii and G. dembecha) from six reservoirs in the highlands of northern Ethiopia using gut contents analysis. Detritus was an important food resource for both species. There was a significant difference in diet composition between G. blanfordii and G. dembecha. While detritus was the dominant food item in both, the diet of G. dembecha is distinguished from that of G. blanfordii by a lower detritus proportion, an additional dominance of chironomid food items. The diet composition of G. dembecha was similar in all reservoirs, whereas the diet composition of G. blanfordii varied among reservoirs and depended on prey availability. The benthic feeding habits of Garra in the reservoirs, reflected by high proportion of detritus and chironomids may contribute to sediment resuspension by disturbing the bottom sediment, and may thus affect reservoir ecology through nutrient enrichment.
    8th International Shallow Lakes Conference, Antalya, Turkey; 10/2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: The elemental composition of phytoplankton is highly variable compared to the relatively narrow stoichiometry of zooplankton grazers. Using a full factorial design, we tested the effects of alterations in algal elemental composition (i.e., food quality) combined with food quantity on the life history of a Daphnia galeata clone from Lake IJsselmeer. Lower food quality reduced survival, growth, and reproduction. Food quantity became important at high food quality only. The strong effect of food quality indicates the potential for a stoichiometric bottleneck in Lake IJsselmeer, resulting in less high quality food for higher trophic levels as a result of re-oligotrophication.
    Inland Waters 10/2014; 4(4):363-368. DOI:10.5268/IW-4.4.701 · 1.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Freshwater ponds deliver a broad range of ecosystem services (ESS). Taking into account this broad range of services to attain cost-effective ESS delivery is an important challenge facing integrated pond management. To assess the strengths and weaknesses of an ESS approach to support decisions in integrated pond management, we applied it on a small case study in Flanders, Belgium. A Bayesian belief network model was developed to assess ESS delivery under three alternative pond management scenarios: intensive fish farming (IFF), extensive fish farming (EFF) and nature conservation management (NCM). A probabilistic cost-benefit analysis was performed that includes both costs associated with pond management practices and benefits associated with ESS delivery. Whether or not a particular ESS is included in the analysis affects the identification of the most preferable management scenario by the model. Assessing the delivery of a more complete set of ecosystem services tends to shift the results away from intensive management to more biodiversity-oriented management scenarios. The proposed methodology illustrates the potential of Bayesian belief networks. BBNs facilitate knowledge integration and their modular nature encourages future model expansion to more encompassing sets of services. Yet, we also illustrate the key weaknesses of such exercises, being that the choice whether or not to include a particular ecosystem service may determine the suggested optimal management practice.
    Journal of Environmental Management 07/2014; 145C:79-87. DOI:10.1016/j.jenvman.2014.06.015 · 3.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is well known that submerged macrophytes can suppress phytoplankton blooms in lakes and thus promote water quality and biodiversity. One of the possible mechanisms through which submerged macrophytes control phytoplankton is by producing allelochemicals that suppress phytoplankton growth rates. The in situ importance of allelopathy, however, is often questioned because it is assumed that phytoplankton communities can rapidly evolve resistance to allelochemicals.Here, we present the results of two mesocosm experiments in which we evaluated whether the submerged macrophyte Elodea nuttallii is capable of controlling phytoplankton biomass over periods of 4 to 8 weeks. Such a timescale is long relative to the generation time of phytoplankton and is therefore expected to allow the development of resistance through compositional shifts at both population and community levels.Although the mesocosms were inoculated with a diverse phytoplankton inoculum including species that had previously been exposed to Elodea, phytoplankton biomass remained consistently low during the course of the experiments in the treatments with Elodea. As zooplankton grazing and competition for nutrients and light by macrophytes were excluded in our experiments, this suggests that phytoplankton was controlled by allelopathy.Dialysis bag assays, performed at the end of each mesocosm experiment, showed that phytoplankton communities from mesocosms with Elodea were equally sensitive to exudates from Elodea than phytoplankton communities from mesocosms without Elodea.These results suggest that phytoplankton communities do not evolve resistance to allelochemicals from Elodea. This may allow Elodea to control phytoplankton in natural ecosystems over prolonged time periods through allelopathy.
    Freshwater Biology 05/2014; 59(5). DOI:10.1111/fwb.12316 · 2.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ecological Stoichiometry theory predicts that the production, elemental structure and cellular content of biomolecules should depend on the relative availability of resources and the elemental composition of their producer organism. We review the extent to which carbon- and nitrogen-rich phytoplankton toxins are regulated by nutrient limitation and cellular stoichiometry. Consistent with theory, we show that nitrogen limitation causes a reduction in the cellular quota of nitrogen-rich toxins, while phosphorus limitation causes an increase in the most nitrogen-rich paralytic shellfish poisoning toxin. In addition, we show that the cellular content of nitrogen-rich toxins increases with increasing cellular N : P ratios. Also consistent with theory, limitation by either nitrogen or phosphorus promotes the C-rich toxin cell quota or toxicity of phytoplankton cells. These observed relationships may assist in predicting and managing toxin-producing phytoplankton blooms. Such a stoichiometric regulation of toxins is likely not restricted to phytoplankton, and may well apply to carbon- and nitrogen-rich secondary metabolites produced by bacteria, fungi and plants.
    Ecology Letters 04/2014; 17(6). DOI:10.1111/ele.12280 · 13.04 Impact Factor
  • Source
    Hydrobiologia 02/2014; 723(1). DOI:10.1007/s10750-013-1689-0 · 2.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In semi-arid regions, the construction of small reservoirs is important in alleviating water shortage, although many have poor water quality with high turbidity and dense blooms of algae and cyanobacteria, and there are large differences in the ecology of such reservoirs.We took advantage of two exceptionally dry years in northern Ethiopia to study the effect of a dry period and the associated fish kills on reservoir ecology and water quality. We studied 13 reservoirs, seven of which dried up in 2009. Four of the latter dried up again in 2010. We monitored the ecology of these reservoirs from 2009 to 2011, hypothesising that the pattern of reservoir drying would explain ecological differences among them.Reservoirs that refilled after drying had a significantly lower fish biomass, lower biomass of phytoplankton (expressed as chlorophyll-a) and cyanobacteria (Microcystis), clearer water, greater macrophyte cover and lower nutrient concentrations than reservoirs that did not dry. Although the differences in water quality were most striking in the wet season after a drying event, there were persistent effects on reservoir ecology. The three categories of reservoirs we distinguished, based on their behaviour in 2009 and 2010, also showed differences in 2004, a year during which none of the reservoirs dried out. While drying evidently results in better water quality, we could not disentangle the effects of drying per se from that of reductions in fish biomass. The total combined effect was highly significant in all 3 years, whereas the separate effects of drying and loss of fish were only significant in 2004.Our results suggest that differences in water quality and ecology among reservoirs depend on their propensity to dry out. Drying might be used as a restoration measure to reduce potentially harmful cyanobacterial blooms in reservoirs.
    Freshwater Biology 02/2014; 59(4). DOI:10.1111/fwb.12312 · 2.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Freshwater ponds deliver a broad range of ecosystem services (ESS). Taking into account this broad range of services to attain cost-effective ESS delivery is an important challenge facing integrated pond management. To assess the strengths and weaknesses of an ESS approach to support decisions in integrated pond management, we applied it on a small case study in Flanders, Belgium. A Bayesian belief network model was developed to assess ESS delivery under three alternative pond management scenarios: intensive fish farming (IFF), extensive fish farming (EFF) and nature conservation management (NCM). A probabilistic cost-benefit analysis was performed that includes both costs associated with pond management practices and benefits associated with ESS delivery. Whether or not a particular ESS is included in the analysis affects the identification of the most preferable management scenario by the model. Assessing the delivery of a more complete set of ecosystem services tends to shift the results away from intensive management to more biodiversity-oriented management scenarios. The proposed methodology illustrates the potential of Bayesian belief networks. BBNs facilitate knowledge integration and their modular nature encourages future model expansion to more encompassing sets of services. Yet, we also illustrate the key weaknesses of such exercises, being that the choice whether or not to include a particular ecosystem service may determine the suggested optimal management practice.
  • Source
    Jing Liu, Janne Soininen, Bo‐Ping Han, Steven A. J. Declerck
    [Show abstract] [Hide abstract]
    ABSTRACT: AimDendritic ecological networks (DENs), such as river systems, combine features that challenge the traditional conceptual views and empirical approaches applied to metacommunities. As a result of their dendritic branching geometry and stream flow directionality, they are strongly hierarchical and asymmetrical. We analysed the metacommunity structure of benthic diatoms in a large‐scale river system with the aim of evaluating the importance of potential causal influences. Furthermore, we hypothesized that metacommunities of diatoms that are strongly attached to their substrata show a different spatial structure than metacommunities of other, more weakly attached diatoms. LocationThe study was carried out in the Dong River, a 32,275 km2 subtropical river network located in southern China. Methods We surveyed benthic diatom communities during three seasons (dry, intermediate and wet). Using partial redundancy analysis, we partitioned community variation among environmental models and different spatial eigenfunction models to evaluate the influence of alternative dispersal pathways (overland versus water course dispersal), stream directionality, man‐made dams and diatom functional traits on diatom metacommunity structure. ResultsModels based on hydrological connections and water directionality represent spatial patterns better than overland distances, suggesting that the dynamics of benthic diatom metacommunities are mainly confined to the river network and influenced by the prevailing water flow. We found significant effects of man‐made dams on the spatial structure of important limnological variables and diatom metacommunity structure. The metacommunity of strongly attached diatoms also showed a weaker signature of flow directionality than that of other growth forms, especially in seasons with high water levels. Main conclusionsWe conclude that the consideration of among‐site connectivity, flow directionality and species traits is key to a better understanding of the spatial ecology of passively dispersing microbial organisms in river systems.
    Journal of Biogeography 12/2013; 40(12). DOI:10.1111/jbi.12160 · 4.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Temperate shallow meso-to eutrophic lakes can exist in one of two alternative states with contrasting foodwebs, referred to as the clear-water and the turbid state. We describe the planktonic ciliate communities of such lakes based on a survey of 66 northwestern European lakes. Ciliates were enumerated and identified to species level according to the quantitative protargol staining technique. Ciliate biomass was on average twice as high in the turbid than in the clear-water lakes. The ciliate communities were dominated by oligotrichs and protostomatids, and no differences in functional composition or -diversity could be detected between turbid and clear-water lakes, although -diversity tended to be higher in the latter. At the species level, however, community structure strongly differed between turbid and clear-water lakes, and several indicator species could be identified for the different lake categories. Variation partitioning showed that nutrient status did not explain ciliate community structure independent of the alternative states, while lake area was identified as an additional structuring factor for the ciliate communities. These results stress the importance of the ecosystem structure in shaping ciliate communities in temperate shallow lakes and suggest that nutrient status has little direct effect on ciliate community structure in such lakes.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biodiversity and nature values in anthropogenic landscapes often depend on land use practices and management. Evaluations of the association between management and biodiversity remain, however, comparatively scarce, especially in aquatic systems. Furthermore, studies also tend to focus on a limited set of organism groups at the local scale, whereas a multi-group approach at the landscape scale is to be preferred. This study aims to investigate the effect of pond management on the diversity of multiple aquatic organism groups (e.g. phytoplankton, zooplankton, several groups of macro-invertebrates, submerged and emergent macrophytes) at local and regional spatial scales. For this purpose, we performed a field study of 39 shallow man-made ponds representing five different management types. Our results indicate that fish stock management and periodic pond drainage are crucial drivers of pond biodiversity. Furthermore, this study provides insight in how the management of eutrophied ponds can contribute t
    PLoS ONE 08/2013; 8:e72538. DOI:10.1371/journal.pone.0072538 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Temperate shallow meso- to eutrophic lakes can exist in one of two alternative states with contrasting foodwebs, referred to as the clear-water and the turbid state. We describe the planktonic ciliate communities of such lakes based on a survey of 66 northwestern European lakes. Ciliates were enumerated and identified to species level according to the quantitative protargol staining technique. Ciliate biomass was on average twice as high in the turbid than in the clear-water lakes. The ciliate communities were dominated by oligotrichs and protostomatids, and no differences in functional composition or α-diversity could be detected between turbid and clear-water lakes, although β-diversity tended to be higher in the latter. At the species level, however, community structure strongly differed between turbid and clear-water lakes, and several indicator species could be identified for the different lake categories. Variation partitioning showed that nutrient status did not explain ciliate community structure independent of the alternative states, while lake area was identified as an additional structuring factor for the ciliate communities. These results stress the importance of the ecosystem structure in shaping ciliate communities in temperate shallow lakes and suggest that nutrient status has little direct effect on ciliate community structure in such lakes.
    European Journal of Protistology 07/2013; DOI:10.1016/j.ejop.2013.06.001 · 2.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Garra species are among the most abundant fish in small rivers of northern Ethiopia. Many manmade reservoirs in the region have been colonized by Garra, which often are the only fish species present and have become very abundant. Little is known about the ecology of these reservoir populations of riverine species. In this study we investigated the distribution patterns and gut fullness of 2 dominant species, G. blanfordii and G. geba, in 3 recently created reservoirs (Gereb Awso, Tsinkanet, and Mai Gassa I) in Tigray, northern Ethiopia. Species composition differed among reservoirs. Our data on fish catch densities and the fullness of the foregut suggest that the ecology of the Garra populations in the reservoirs is likely influenced by the avoidance of predation by birds. G. blanfordii, and to a lesser extent G. geba, foraged most actively after sunset.
    Inland Waters 04/2013; 3(3):331-340. DOI:10.5268/IW-3.3.572 · 1.43 Impact Factor

Publication Stats

2k Citations
243.65 Total Impact Points

Institutions

  • 2009–2015
    • Netherlands Institute of Ecology (NIOO-KNAW)
      Wageningen, Gelderland, Netherlands
  • 2005–2015
    • University of Leuven
      • • Section of Ecology, Evolution and Biodiversity Conservation
      • • Centre for Surface Chemistry and Catalysis (COK)
      • • Department of Biology
      Louvain, Flemish, Belgium
  • 2012
    • University of British Columbia - Vancouver
      • Department of Zoology
      Vancouver, British Columbia, Canada
  • 1997–2006
    • Ghent University
      • Department of Biology
      Gand, Flemish, Belgium
  • 2003
    • Uppsala University
      Uppsala, Uppsala, Sweden
  • 1998
    • University of Granada
      • Department of Animal Biology
      Granata, Andalusia, Spain