Shi-Wen Xu

Northeast Agricultural University, Charbin, Heilongjiang Sheng, China

Are you Shi-Wen Xu?

Claim your profile

Publications (43)95.73 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Selenium (Se) influences the metabolism of thyroid hormones in mammals. However, the role of Se deficiency in the regulation of thyroid hormones in chickens is not well known. In the present study, we examined the levels of thyroidal triiodothyronine (T3), thyroidal thyroxine (T4), free triiodothyronine, free thyroxine (FT4), and thyroid-stimulating hormone in the serum and the mRNA expression levels of 25 selenoproteins in chicken thyroids. Then, principal component analysis (PCA) was performed to analyze the relationships between the selenoproteins. The results indicated that Se deficiency influenced the conversion of T4 to T3 and induced the accumulation of T4 and FT4. In addition, the mRNA expression levels of the selenoproteins were generally decreased by Se deficiency. The PCA showed that eight selenoproteins (deiodinase 1 (Dio1), Dio2, Dio3, thioredoxin reductase 2 (Txnrd2), selenoprotein i (Seli), selenoprotein u (Selu), glutathione peroxidase 1 (Gpx1), and Gpx2) have similar trends, which indicated that they may play similar roles in the metabolism of thyroid hormones. The results showed that Se deficiency inhibited the conversion of T4 to T3 and decreased the levels of the crucial metabolic enzymes of the thyroid hormones, Dio1, Dio2, and Dio3, in chickens. In addition, the decreased selenoproteins (Dio1, Dio2, Dio3, Txnrd2, Seli, Selu, Gpx1, and Gpx2) induced by Se deficiency may indirectly limit the conversion of T4 to T3 in chicken thyroids. The information presented in this study is helpful to understand the role of Se in the thyroid function of chickens.
    Biological trace element research. 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study describes the effects of selenium (Se) deficiency on the messenger ribonucleic acid (mRNA) expression of 25 selenoproteins (Sels) (including glutathione peroxidases (GPx1-GPx4), thioredoxin reductases (TrxR1-TrxR3), iodothyronine deiodinases (ID1-ID3), selenophosphate synthetase 2 (SPS2), 15-kDa Sel (Sel15), SelH, SelI, SelK, SelM, Sepn1, SelO, Sepx, Selpb, SelS, SelT, SelW, Sepp1, and SelU in the adipose tissues (subcutaneous adipose, visceral adipose, and articular adipose) of chickens. One hundred and fifty 1-day-old chickens were randomly assigned to two groups of 75 each and were fed a low-Se diet (0.032 mg/kg Se) or a control diet (0.282 mg/kg Se). The expression levels of 25 Sel mRNAs were determined on days 35, 45, and 55 from three parts (subcutaneous adipose, visceral adipose, and articular adipose) of the chicken adipose tissues. The results showed that the expression levels of the 25 Sel mRNAs were significantly lower (P < 0.05) in the low-selenium group than in the control group. In addition, the Sel mRNA expression levels in the three adipose tissues were observed to decrease in a time-dependent manner with increasing feeding time.
    Biological trace element research. 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Little is known about the influence of subchronic cadmium exposure on apoptosis in the immune organs of birds and the protective effects on apoptosis by selenium against cadmium. The aim of this study was to investigate the effect of subchronic cadmium exposure on nitric oxide and apoptosis in the immune organs of chicken and the protective roles of selenium against cadmium-induced apoptosis. Two hundred ten 30-day-old chickens were randomly assigned to three groups and were fed a basal diet, cadmium + selenium (as 150 mg of CdCl2 per kg of diet + 10 mg of Na2SeO3 per kg of diet ) or cadmium (as 150 mg of CdCl2 per kg of diet) in basic diets for 15, 30, 45, and 60 days. Then, the production of nitric oxide, messenger RNA (mRNA level), and the activity of inducible nitric oxide synthase, ultrastructural changes, TUNEL assay, and flow cytometric analysis of apoptosis and Bcl-2 and p53 mRNA levels in the immune organs were examined. The results showed that cadmium exposure caused ultrastructural damage and increased production of nitric oxide, mRNA level, and activity of inducible nitric oxide synthase, the degree, and the number of apoptotic cells in a time-dependent manner. Cadmium exposure decreased Bcl-2 mRNA level and increased p53 mRNA level in a time-dependent manner. Selenium supplementation during dietary cadmium reduced the production of nitric oxide, the mRNA level, and activity of inducible nitric oxide synthase, ultrastructural damage, and apoptosis in the immune organs of chicken. It indicated that cadmium induced nitric oxide-mediated apoptosis of immune organs, and selenium played protective effects against cadmium-induced apoptosis in the immune organs of chickens.
    Biological trace element research. 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: To determine the relationship between dietary selenium (Se) deficiency or excess and liver hydrogen peroxide (H2O2) metabolism in chickens, 1-day-old chickens received insufficient Se (0.028 mg Se per kg of diet) or excess Se (3.0 or 5.0 mg Se per kg of diet) in their diets for 8 weeks. Body and liver weight changes, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, H2O2 content, and activities and mRNA levels of enzymes associated with H2O2 metabolism (catalase (CAT) and superoxide dismutase (SOD) 1-3) were determined in the liver. This study showed that Se deficiency or excess Se intake elicited relative severe changes. Se deficiency decreased growth, while Se excess promoted growth in chickens. Both diets vastly altered the liver function, but no obvious histopathological changes were observed in the liver. Se deficiency significantly lowered SOD and CAT activities, and the H2O2 content in the liver and serum increased. Se excess (3.0 mg/kg) decreased SOD and CAT activities with changes in their mRNA levels, and the H2O2 content increased. The larger Se excess (5.0 mg/kg) showed more serious effects but was not fatal. These results indicated that the H2O2 metabolism played a destructive role in the changes in bird liver function induced by Se deficiency or excess.
    Biological trace element research 05/2014; · 1.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cadmium (Cd), a potent hepatotoxin, has been reported to induce endoplasmic reticulum (ER) stress in various cell types. However, whether such effect exists in bird is still unclear. To delineate the effects of Cd exposure on ER stress response, we examined the expression of 78-kDa glucose-regulated protein (GRP78) and alteration in calcium homeostasis in primary chicken hepatocytes treated with 2-22µM Cd for 24h. A significant decrease of cell viability was observed in chicken hepatocytes following Cd administration. In cells treated with Cd, GRP78 protein levels increased in a dose-dependent manner. In addition, GRP78 and GRP94mRNA levels were elevated in response to Cd exposure. The increase of the intracellular Ca(2+) concentration in chicken hepatocytes was found during Cd exposure. Cd significantly decreased the CaM mRNA levels in hepatocytes. These results show that Cd regulates the expression of GRP78 and calcium homeostasis in chicken hepatocytes, suggesting that ER stress induced by Cd plays an important role in the mechanisms of Cd cytotoxicity to the bird hepatocytes.
    Ecotoxicology and Environmental Safety 05/2014; 106C:109-114. · 2.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Selenium (Se) is an important dietary micronutrient with antioxidative roles. Cadmium (Cd), a ubiquitous environmental pollutant, is known to cause brain lesion in rats and humans. However, little is reported about the deleterious effects of subchronic Cd exposure on the brain of poultry and the protective roles on the brain by Se against Cd. The aim of this study was to investigate the protective effects of Se on Cd-induced brain damage in chickens. One hundred twenty 100-day-old chickens were randomly assigned to four groups and were fed a basal diet, or Se (as 10 mg Na2SeO3/kg dry weight of feed), Cd (as 150 mg CdCl2/kg dry weight of feed), or Cd + Se in their basic diets for 60 days. Then, concentrations of Cd and Se, production of nitric oxide (NO), messenger RNA (mRNA) level and activity of inducible NO synthase (iNOS), level of oxidative stress, and histological and ultrastructural changes of the cerebrum and cerebellum were examined. The results showed that Cd exposure significantly increased Cd accumulation, NO production, iNOS activities, iNOS mRNA level, and MDA content in the cerebrum and cerebellum. Cd treatment obviously decreased Se content and antioxidase activities and caused histopathological changes in the cerebrum and cerebellum. Se supplementation during dietary Cd obviously reduced Cd accumulation, NO production, mRNA level and activity of iNOS, oxidative stress, and histopathological damage in the cerebrum and cerebellum of chickens. It indicated that Se ameliorates Cd-induced brain damage in chickens by regulating iNOS-NO system changes, and oxidative stress induced by Cd and Se can serve as a potential therapeutic for Cd-induced brain lesion of chickens.
    Biological trace element research 02/2014; · 1.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To verify the antioxidative role of SelW in oxidant-induced chicken splenic lymphocyte, in this report, the influence of selenite supplementation and SelW gene silence on H2O2-mediated cell viability and cell apoptosis in cultured splenic lymphocyte derived from spleen of chicken were examined. The cultured cells were treated with sodium selenite and H2O2, or knocked down SelW with small interfering RNAs (siRNAs). The lymphocytes were examined for cell viability, cell apoptosis and mRNA expression levels of SelW and apoptosis-related genes (Bcl-2, Bax, Bak-1, caspase-3 and p53). The results show that the mRNA expression of SelW were effectively increased after treatment with sodium selenite, and H2O2-induced cell apoptosis was significantly decreased and cell viability was significantly increased. 20 μM H2O2 was found to induce cell apoptosis and decrease cell viability, which was alleviated obviously when cells were pretreated with sodium selenite before exposure to 20 μM H2O2. Meanwhile, H2O2 induced a significantly up-regulation of the Bax/Bcl-2 ratio, Bax, Bak-1, caspase-3 and p53 and down-regulation of Bcl-2 (P < 0.05). When lymphocytes were pretreated with Se before treated with H2O2, the Bax/Bcl-2 ratio and mRNA expression of those genes were significantly decreased, and Bcl-2 was increased (P < 0.05). SelW siRNA-transfected cells were more sensitive to the oxidative stress induced by treatment of H2O2 than control cells. Silencing of the lymphocyte SelW gene decreased their cell viability, and increased their apoptosis rate and susceptibility to H2O2. Silencing of SelW significantly up-regulated the Bax/Bcl-2 ratio, Bax, Bak-1, caspase-3 and p53 and down-regulated Bcl-2 (P < 0.05). The present study demonstrates that SelW plays an important role in protection of splenic lymphocyte of birds from oxidative stress.
    Biology of Metals 02/2014; · 3.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have determined the effects of dietary selenium (Se) supplementation on selenoprotein N (SelN, SEPN1), selenophosphate synthetase-1 (SPS1), and selenocysteine-synthase (SecS) mRNA abundance in chicken skeletal and cardiac muscles. To investigate collective responses of these genes to dietary Se concentrations ranging from deficiency to moderately high level in muscle tissues of chicken, 1-day-old chickens were exposed to a diet of deficient Se and supplemented with Se (0.15 mg Se/kg and 1.50 mg Se/kg) as sodium selenite in the feed for 35 days. Muscle tissues (flight, breast, leg, and cardiac muscles) were collected and examined for Se content and mRNA levels of SelN on days 1, 15, 25, and 35 days, respectively. Moreover, SPS1 and SecS mRNA levels were analyzed. The results showed that the expression of SelN gene in cardiac muscle responded to dietary Se concentrations. SelN gene was downregulated in the Se deficiency group (L group), and upregulated in the Se excess group (H group) compared with the moderate Se group (M group) (P < 0.05) in cardiac muscle. Se deficiency mainly unregulated SelN mRNA level in skeletal muscles compared with M group. Excess dietary Se mainly resulted in the upregulation of SelN mRNA level in skeletal muscles compared with the M group. SecS mRNA levels responded to dietary Se concentrations showed a similar change compared with SelN in cardiac muscle. SPS1 mRNA levels responded to dietary Se concentrations showed a downregulation in L group and upregulation in H group. However, SelN mRNA levels displayed a different expression pattern in different skeletal and cardiac muscles. Moreover, Se also regulated the levels of SPS1 and SecS mRNAs. In summary, Se regulated the expression of SelN gene and affected the mRNA levels of SecS and SPS1. The level of Se in the feed may regulate SelN biosynthesis by affecting the levels of SPS1 and SecS mRNA.
    Biological trace element research 02/2014; · 1.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Avermectin (AVM) is a pesticide that can accumulate in the environment through spray-drift, runoff or field drainage. Residues of AVM or its metabolites in livestock feces have toxic effects on non-target aquatic and terrestrial organisms. In this study, changes in oxidative stress and immunity in pigeon spleen tissues were detected after subchronic exposure to AVM for 30, 60, and 90 days. In pigeon spleen, the activities of total anti-oxidation capability (T-AOC), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) decreased significantly, whereas the levels of malondialdehyde (MDA), protein carbonyl (PCO), and DNA-protein crosslink (DPC) coefficients increased. Additionally, obvious ultrastructure alterations were observed. These results indicated that AVM induced oxidative stress and damaged the normal structure of spleen cells. The exposure to AVM could lead to increases in the mRNA levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and interleukin-4 (IL-4), as well as a decrease in the mRNA level of interferon-γ (IFN-γ), in a dose-time-dependent manner in pigeon spleen. The results imply that AVM induces immunosuppression in the spleen tissue of pigeons. The information presented in this study may be helpful for understanding the mechanism of AVM-induced immunotoxicity in birds.
    Chemico-biological interactions 01/2014; · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to examine the effects of avermectin (AVM) on amino acid neurotransmitters and their receptors in the pigeon brain. Four groups two-month-old American king pigeons (n=20/group) were fed either a commercial diet or an AVM-supplemented diet (20mg/kg·diet, 40mg/kg·diet, or 60mg/kg·diet) for 30, 60, or 90days. The contents of aspartic acid (ASP), glutamate (GLU), glycine (GLY), and γ-aminobutyric acid (GABA) in the brain tissues were determined using ultraviolet high-performance liquid chromatography (HPLC). The expression levels of the GLU and GABA receptor genes were analyzed using real-time quantitative polymerase chain reaction (qPCR). The results indicate that AVM exposure significantly enhances the contents of GABA, GLY, GLU, and ASP in the cerebrum, cerebellum, and optic lobe. In addition, AVM exposure increases the mRNA expression levels of γ-aminobutyric acid type A receptor (GABAAR), γ-aminobutyric acid type B receptor (GABABR), N-methyl-d-aspartate 1 receptor (NR1), N-methyl-d-aspartate 2A receptor (NR2A), and N-methyl-d-aspartate 2B receptor (NR2B) in a dose- and time-dependent manner. Moreover, we found that the most damaged organ was the cerebrum, followed by the cerebellum, and then the optic lobe. These results show that the AVM-induced neurotoxicity may be associated with its effects on amino acid neurotransmitters and their receptors. The information presented in this study will help supplement the available data for future AVM toxicity studies.
    Pesticide Biochemistry and Physiology 01/2014; · 2.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cadmium (Cd), a potent hepatotoxin, has been reported to induce endoplasmic reticulum (ER) stress in various cell types. However, whether such effect exists in bird is still unclear. To delineate the effects of Cd exposure on ER stress response, we examined the expression of 78-kDa glucose-regulated protein (GRP78) and alteration in calcium homeostasis in primary chicken hepatocytes treated with 2–22 µM Cd for 24 h. A significant decrease of cell viability was observed in chicken hepatocytes following Cd administration. In cells treated with Cd, GRP78 protein levels increased in a dose-dependent manner. In addition, GRP78 and GRP94 mRNA levels were elevated in response to Cd exposure. The increase of the intracellular Ca2+ concentration in chicken hepatocytes was found during Cd exposure. Cd significantly decreased the CaM mRNA levels in hepatocytes. These results show that Cd regulates the expression of GRP78 and calcium homeostasis in chicken hepatocytes, suggesting that ER stress induced by Cd plays an important role in the mechanisms of Cd cytotoxicity to the bird hepatocytes.
    Ecotoxicology and Environmental Safety 01/2014; 106:109–114. · 2.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As an effective insecticidal and nematicidal agent, avermectin (AVM) has been widely used in agricultural production and stock farming areas. Subsequently, the residues of AVM or its active metabolites in animal manure pose a toxic threat to non-target organisms in the environment. As the most characteristic epigenetic phenomena, DNA methylation status is a useful biological signal for the toxicity assessment of environmental chemical toxicants. In this study, analyses of the overall level of genomic DNA methylation were performed, and the expression levels of DNA methyltransferases (DNMTs), as well as demethylase methyl-CpG-binding domain protein 2 (MBD2), in pigeon brain tissues after subchronic exposure (with a AVM concentration of 20 mg/kg, 40 mg/kg and 60 mg/kg, respectively) to AVM for 30, 60 and 90 days were investigated. Global DNA hypomethylation and down-regulation of DNMT mRNA expression occurred in a dose-time-dependent manner in pigeon brains. The expression level of MBD2, which functions as a demethylase, was significantly enhanced in a dose-dependent but not time-dependent manner. In addition, the elevated expression level of MBD2 had a more robust effect on genomic DNA hypomethylation compared to changes in DNMT expression. Taken together, these results suggested that subchronic dose exposures of AVM could affect the global DNA methylation status, and this mechanism is closely related to changes in the expression levels of DNMTs and MBD2.
    Chemico-Biological Interactions. 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Selenium (Se) plays an important role in the brain development, function, and degeneration, nutritional encephalomalacia is closely related with dietary Se in avian. However, there is little evidence on the relationship between inflammation and encephalomalacia in avian and the mechanism which Se regulates the inflammatory response in brain tissues remains to be unclear. The present paper describes the effects of Se-deficient granulated diet on one transcription factor-nuclear factor kappaB and four pro-inflammatory cytokines-tumor necrosis factor, cyclooxygenase2, inducible nitric oxide synthase and Prostaglandin E synthase mRNA expression in the chicken brain tissues associated encephalomalacia. One hundred male chickens (1 day old; Weiwei Co. Ltd., Harbin, China) were divided into two groups (50 chickens per group). The expression levels in the brain tissues (cerebral gray matter, cerebral white matter, marrowbrain, cerebellum, thalamus and brain stem) were determined by real-time PCR on days 15, 25, 35, 45, and 55, respectively. The results showed the productions of pro-inflammatory mediators were increased following Se-deficiency. These data indicate the correlations between nutritional encephalomalacia and inflammatory response and the activity of inflammatory response in chicken brain may be induced by Se-deficiency.
    Biology of Metals 12/2013; · 3.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Extensive use of avermectin (AVM) can result in environment pollution, and it is important to evaluate the potential impact this antibiotic has on ecological systems. Few published literatures have discussed the liver injury mechanisms induced by AVM on birds. In this study, pigeons were exposed to feed containing AVM (0, 20, 40 and 60mg/kg diet) for 30, 60, 90 days respectively. The results showed that AVM increased the number of apoptosis and the expression level of caspase-3, 8, fas mRNA in the liver of pigeons. Ultrastructural alterations, including mitochondrial damage and chromatin aggregation, become severe with increase exposure dose. Exposure to AVM induced significant changes in antioxidant enzyme {superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px)} activities and malondialdehyde (MDA) content, augmented protein carbonyl (PCO) content and DNA-protein crosslink (DPC) coefficient, in a concentration-dependent manner in the liver of pigeons. Our results show that AVM has toxic effect in pigeon liver, and the mechanism of injury caused by AVM is closely related to apoptosis and oxidative stress.
    Ecotoxicology and Environmental Safety 10/2013; · 2.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Avermectins (AVMs) are the active components of some insecticidal and nematicidal products used in agriculture and veterinary medicine for the prevention of parasitic diseases. Residues of AVM drugs or their metabolites in livestock feces have toxic effects on non-target aquatic and terrestrial organisms. In this study, oxidative stress responses and pathological changes on pigeon brain tissues and serum after subchronic exposure to AVM for 30, 60 and 90 days were investigated. The decrease in antioxidant enzyme (superoxide dismutase, SOD and glutathione peroxidase, GSH-Px) activities and increase in methane dicarboxylic aldehyde content in a dose-time-dependent manner in the brain and serum of pigeon were observed. The protein carbonyl content, an indicator of protein oxidation, and DNA-protein crosslink coefficient were significantly augmented with dose-time-dependent properties. The microscopic structures of the cerebrum, cerebellum and optic lobe altered obviously, the severity of which increased with the concentration of AVM and exposure time. The results imply that AVM could induce oxidative damage to the brain tissue and serum of pigeon. The information presented in this study is helpful to understand the mechanism of AVM-induced oxidative stress in birds.
    Ecotoxicology 08/2013; · 2.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cadmium (Cd) is one of the most toxic metal compounds released into the environment. It was well known that Cd induced hepatotoxicity in animal models. However, little is known about the negative effects of Cd toxicity in the liver of birds. To investigate the Cd hepatotoxicity in birds and the protective effects of selenium (Se) against subchronic exposure to dietary Cd, 100-day-old cocks received either Se (as 10mg Na2SeO3 per kg of diet), Cd (as 150mg CdCl2 per kg of diet) or Cd+Se in their diets for 60 days. Histological and ultrastructural changes in the liver, the concentrations of Cd and Se, the lipid peroxidation (LPO) and nitric oxide (NO) production, the activities of the antioxidants superoxide dismutase (SOD) and glutathione peroxidase (GPx), nitric oxide synthase (NOS) activities and apoptosis were determined. Exposure to Cd significantly reduced SOD and GPx activity, Se content in the liver tissue. It increased the LPO and NO production, the numbers of apoptotic cells and Cd concentration and caused obvious histopathological changes in the liver. Concurrent treatment with Se reduced the Cd-induced liver histopathological changes, oxidative stress, overexpression of NO and apoptosis, suggesting that the toxic effects of Cd on the liver is partly ameliorated by inorganic Se. Se supplementation also modified the distribution of Cd in the liver.
    Ecotoxicology and Environmental Safety 07/2013; · 2.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Manganese (Mn) is a trace element known to be essential for maintaining the proper function and regulation of many biochemical and cellular reactions. However, little is known about the reproductive toxicity of Mn in birds. To investigate the toxicity of Mn on male reproduction in birds, 50-day-old cocks were fed either a commercial diet or a Mn-supplemented diet containing 600, 900, and 1,800 mg/kg MnCl2. After being treated with Mn for 30, 60, and 90 d, the following were determined: Mn content; histological and ultrastructural changes in the testes, apoptosis; the malondialdehyde (MDA) level; the activities of superoxide dismutase (SOD); the inhibition ability of hydroxyl radicals (OH·); the levels of nitric oxide (NO), nitric oxide synthase (NOS), and protein carbonyl in the testes; the DNA-protein crosslinks (DPC); and the activity of the ATP enzyme. Exposure to Mn significantly lowered the activity of SOD and glutathione peroxidase (GPx) and the inhibition ability of OH·. Mn exposure also increased the levels of MDA, NO, NOS, DPC, and protein carbonyl; the number of apoptotic cells; and the Mn content and caused obvious histopathological changes in the testes. These findings suggested that Mn exposure resulted in the oxidative damage of cock testicular tissue by altering radical formation, ATP enzyme systems, apoptosis, and DNA damage, which are possible underlying reproductive toxicity mechanisms induced by Mn exposure.
    Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association 07/2013; · 2.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cold temperature reduces the immunity and re-production activities of the poultry. This study aimed to investigate the effects of acute and chronic cold exposure on the regulation of nuclear factor-kappa B (NF-κB) and tumor necrosis factor-α (TNF-α) expression in the duodenum, jejunum, and ileum of quails. In this study, 96 15-d-old male quails were randomly allocated into 12 groups (eight each group) for exposure to acute (up to 12h) and chronic (up to 20days) cold stress (12±1°C). Antioxidative function was examined by superoxide dismutase (SOD) and oxidative damage was examined by malondialdehyde (MDA) detection. qRT-PCR was performed to analyze expression of NF-κB and TNF-α, and DNA sequencing was performed to analyze PCR products. The data showed that under cold stress, the SOD level decreased, and the MDA level had the tendency to increase in duodenum, jejunum and ileum of quails, while the mRNA expression of NF-κB increased and TNF-α decreased in duodenum, jejunum and ileum of quails. The data from the current study indicated that both acute and chronic cold stresses were able to induce inflammatory responses in the duodenum, jejunum and ileum, which might be due to the cold-damaged intestinal oxidative stress.
    Research in Veterinary Science 06/2013; · 1.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chlorpyrifos (CPF) and atrazine (ATR) are the most widely used organophosphate insecticides and triazine herbicides, respectively, worldwide. This study aimed at investigating the effects of ATR, CPF and mixture on common carp gills following 40-d exposure and 40-d recovery experiments. Cytochrome P450 content, activities of aminopyrine N-demethylase (APND) and erythromycin N-demethylase (ERND) and the mRNA levels of the CYP1 family (CYP1A, CYP1B, and CYP1C) were determined. In total, 220 common carps were divided into eleven groups, and each group was treated with a specific concentration of ATR (4.28, 42.8 and 428μg/L), CPF (1.16, 11.6 and 116μg/L) or ATR-CPF mixture (1.13, 11.3 and 113μg/L). The results showed that P450 content and activities of APND and ERND in fish exposed to ATR and mixture were significantly higher than those in the control group. After the 40-d recovery treatment (i.e., depuration), the P450 content and the activities of APND and ERND in fish decreased to the background levels. A similar tendency was also found in the mRNA levels of the CYP1 family (CYP1A, CYP1B, and CYP1C) in common carp gills. The CPF-treated fish showed no significant difference from the control groups, except for a significant CYP1C induction. These results indicated that CYP enzyme levels are induced by ATR but were only slightly affected by CPF in common carp gills. In addition, the ATR and CPF exposure showed an antagonistic effect on P450 enzymes in common carp gills.
    Ecotoxicology and Environmental Safety 05/2013; · 2.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to investigate the effects of cold stress on the expression levels of heat shock proteins (Hsps90, 70, 60, 40, and 27) and inflammatory factors (iNOS, COX-2, NF-κB, TNF-α, and PTGEs) and oxidative indexes in hearts of chickens. Two hundred forty 15-day-old male chickens were randomly divided into 12 groups and kept at the temperature of 12 ± 1 °C for acute and chronic cold stress. There were one control group and five treatment groups for acute cold stress, three control groups, and three treatment groups for chronic cold stress. After cold stress, malondialdehyde level increased in chicken heart; the activity of superoxide dismutase and glutathione peroxidase in the heart first increased and then decreased. The inflammatory factors mRNA levels were increased in cold stress groups relative to control groups. The histopathological analysis showed that heart tissues were seriously injured in the cold stress group. Additionally, the mRNA levels of Hsps (70, 60, 40, and 27) increased significantly (P < 0.05) in the cold stress groups relative to the corresponding control group. Meanwhile, the mRNA level and protein expression of Hsp90 decreased significantly (P < 0.05) in the stress group, and showed a gradually decreasing tendency. These results suggested that the levels of inflammatory factors and Hsps expression levels in heart tissues can be influenced by cold stress. Hsps commonly played an important role in the protection of the heart after cold stress.
    Cell Stress and Chaperones 05/2013; · 2.48 Impact Factor

Publication Stats

105 Citations
95.73 Total Impact Points

Institutions

  • 2009–2014
    • Northeast Agricultural University
      Charbin, Heilongjiang Sheng, China
  • 2012–2013
    • Harbin University of Commerce
      Charbin, Heilongjiang Sheng, China
    • China Agricultural University
      • College of Veterinary Medicine
      Beijing, Beijing Shi, China