Samuel H Sternberg

University of California, Berkeley, Berkeley, California, United States

Are you Samuel H Sternberg?

Claim your profile

Publications (15)254.28 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: A framework for open discourse on the use of CRISPR-Cas9 technology to manipulate the human genome is urgently needed. Copyright © 2015, American Association for the Advancement of Science.
    Science 03/2015; DOI:10.1126/science.aab1028 · 31.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cas9, an RNA-guided DNA endonuclease found in clustered regularly interspaced short palindromic repeats (CRISPR) bacterial immune systems, is a versatile tool for genome editing, transcriptional regulation, and cellular imaging applications. Structures of Streptococcus pyogenes Cas9 alone or bound to single-guide RNA (sgRNA) and target DNA revealed a bilobed protein architecture that undergoes major conformational changes upon guide RNA and DNA binding. To investigate the molecular determinants and relevance of the interlobe rearrangement for target recognition and cleavage, we designed a split-Cas9 enzyme in which the nuclease lobe and α-helical lobe are expressed as separate polypeptides. Although the lobes do not interact on their own, the sgRNA recruits them into a ternary complex that recapitulates the activity of full-length Cas9 and catalyzes site-specific DNA cleavage. The use of a modified sgRNA abrogates split-Cas9 activity by preventing dimerization, allowing for the development of an inducible dimerization system. We propose that split-Cas9 can act as a highly regulatable platform for genome-engineering applications.
    Proceedings of the National Academy of Sciences 02/2015; DOI:10.1073/pnas.1501698112 · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The CRISPR-associated protein Cas9 is an RNA-guided DNA endonuclease that uses RNA-DNA complementarity to identify target sites for sequence-specific double-stranded DNA (dsDNA) cleavage. In its native context, Cas9 acts on DNA substrates exclusively because both binding and catalysis require recognition of a short DNA sequence, known as the protospacer adjacent motif (PAM), next to and on the strand opposite the twenty-nucleotide target site in dsDNA. Cas9 has proven to be a versatile tool for genome engineering and gene regulation in a large range of prokaryotic and eukaryotic cell types, and in whole organisms, but it has been thought to be incapable of targeting RNA. Here we show that Cas9 binds with high affinity to single-stranded RNA (ssRNA) targets matching the Cas9-associated guide RNA sequence when the PAM is presented in trans as a separate DNA oligonucleotide. Furthermore, PAM-presenting oligonucleotides (PAMmers) stimulate site-specific endonucleolytic cleavage of ssRNA targets, similar to PAM-mediated stimulation of Cas9-catalysed DNA cleavage. Using specially designed PAMmers, Cas9 can be specifically directed to bind or cut RNA targets while avoiding corresponding DNA sequences, and we demonstrate that this strategy enables the isolation of a specific endogenous messenger RNA from cells. These results reveal a fundamental connection between PAM binding and substrate selection by Cas9, and highlight the utility of Cas9 for programmable transcript recognition without the need for tags.
    Nature 09/2014; DOI:10.1038/nature13769 · 42.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In bacteria, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) DNA-targeting complex Cascade (CRISPR-associated complex for antiviral defense) uses CRISPR RNA (crRNA) guides to bind complementary DNA targets at sites adjacent to a trinucleotide signature sequence called the protospacer adjacent motif (PAM). The Cascade complex then recruits Cas3, a nuclease-helicase that catalyzes unwinding and cleavage of foreign double-stranded DNA (dsDNA) bearing a sequence matching that of the crRNA. Cascade comprises the CasA-E proteins and one crRNA, forming a structure that binds and unwinds dsDNA to form an R loop in which the target strand of the DNA base pairs with the 32-nt RNA guide sequence. Single-particle electron microscopy reconstructions of dsDNA-bound Cascade with and without Cas3 reveal that Cascade positions the PAM-proximal end of the DNA duplex at the CasA subunit and near the site of Cas3 association. The finding that the DNA target and Cas3 colocalize with CasA implicates this subunit in a key target-validation step during DNA interference. We show biochemically that base pairing of the PAM region is unnecessary for target binding but critical for Cas3-mediated degradation. In addition, the L1 loop of CasA, previously implicated in PAM recognition, is essential for Cas3 activation following target binding by Cascade. Together, these data show that the CasA subunit of Cascade functions as an essential partner of Cas3 by recognizing DNA target sites and positioning Cas3 adjacent to the PAM to ensure cleavage.
    Proceedings of the National Academy of Sciences 04/2014; 111(18). DOI:10.1073/pnas.1405079111 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Type II CRISPR-Cas systems use an RNA-guided DNA endonuclease, Cas9, to generate double-strand breaks in invasive DNA during an adaptive bacterial immune response. Cas9 has been harnessed as a powerful tool for genome editing and gene regulation in many eukaryotic organisms. Here, we report 2.6 and 2.2 Å resolution crystal structures of two major Cas9 enzymes subtypes, revealing the structural core shared by all Cas9 family members. The architectures of Cas9 enzymes define nucleic acid binding clefts, and single-particle electron microscopy reconstructions show that the two structural lobes harboring these clefts undergo guide RNA-induced reorientation to form a central channel where DNA substrates are bound. The observation that extensive structural rearrangements occur before target DNA duplex binding implicates guide RNA loading as a key step in Cas9 activation.
    Science 02/2014; DOI:10.1126/science.1247997 · 31.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The clustered regularly interspaced short palindromic repeats (CRISPR)-associated enzyme Cas9 is an RNA-guided endonuclease that uses RNA-DNA base-pairing to target foreign DNA in bacteria. Cas9-guide RNA complexes are also effective genome engineering agents in animals and plants. Here we use single-molecule and bulk biochemical experiments to determine how Cas9-RNA interrogates DNA to find specific cleavage sites. We show that both binding and cleavage of DNA by Cas9-RNA require recognition of a short trinucleotide protospacer adjacent motif (PAM). Non-target DNA binding affinity scales with PAM density, and sequences fully complementary to the guide RNA but lacking a nearby PAM are ignored by Cas9-RNA. Competition assays provide evidence that DNA strand separation and RNA-DNA heteroduplex formation initiate at the PAM and proceed directionally towards the distal end of the target sequence. Furthermore, PAM interactions trigger Cas9 catalytic activity. These results reveal how Cas9 uses PAM recognition to quickly identify potential target sites while scanning large DNA molecules, and to regulate scission of double-stranded DNA.
    Nature 01/2014; 507(7490). DOI:10.1038/nature13011 · 42.35 Impact Factor
  • Biophysical Journal 01/2013; 104(2):198-. DOI:10.1016/j.bpj.2012.11.1120 · 3.83 Impact Factor
  • Source
    Rachel E Haurwitz, Samuel H Sternberg, Jennifer A Doudna
    [Show abstract] [Hide abstract]
    ABSTRACT: CRISPR-Cas adaptive immune systems protect prokaryotes against foreign genetic elements. crRNAs derived from CRISPR loci base pair with complementary nucleic acids, leading to their destruction. In Pseudomonas aeruginosa, crRNA biogenesis requires the endoribonuclease Csy4, which binds and cleaves the repetitive sequence of the CRISPR transcript. Biochemical assays and three co-crystal structures of wild-type and mutant Csy4/RNA complexes reveal a substrate positioning and cleavage mechanism in which a histidine deprotonates the ribosyl 2'-hydroxyl pinned in place by a serine, leading to nucleophilic attack on the scissile phosphate. The active site catalytic dyad lacks a general acid to protonate the leaving group and positively charged residues to stabilize the transition state, explaining why the observed catalytic rate constant is ∼10(4)-fold slower than that of RNase A. We show that this RNA cleavage step is essential for assembly of the Csy protein-crRNA complex that facilitates target recognition. Considering that Csy4 recognizes a single cellular substrate and sequesters the cleavage product, evolutionary pressure has likely selected for substrate specificity and high-affinity crRNA interactions at the expense of rapid cleavage kinetics.
    The EMBO Journal 04/2012; 31(12):2824-32. DOI:10.1038/emboj.2012.107 · 10.75 Impact Factor
  • Source
    Samuel H Sternberg, Rachel E Haurwitz, Jennifer A Doudna
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacteria and archaea possess adaptive immune systems that rely on small RNAs for defense against invasive genetic elements. CRISPR (clustered regularly interspaced short palindromic repeats) genomic loci are transcribed as long precursor RNAs, which must be enzymatically cleaved to generate mature CRISPR-derived RNAs (crRNAs) that serve as guides for foreign nucleic acid targeting and degradation. This processing occurs within the repetitive sequence and is catalyzed by a dedicated Cas6 family member in many CRISPR systems. In Pseudomonas aeruginosa, crRNA biogenesis requires the endoribonuclease Csy4 (Cas6f), which binds and cleaves at the 3' side of a stable RNA stem-loop structure encoded by the CRISPR repeat. We show here that Csy4 recognizes its RNA substrate with an ~50 pM equilibrium dissociation constant, making it one of the highest-affinity protein:RNA interactions of this size reported to date. Tight binding is mediated exclusively by interactions upstream of the scissile phosphate that allow Csy4 to remain bound to its product and thereby sequester the crRNA for downstream targeting. Substrate specificity is achieved by RNA major groove contacts that are highly sensitive to helical geometry, as well as a strict preference for guanosine adjacent to the scissile phosphate in the active site. Collectively, our data highlight diverse modes of substrate recognition employed by Csy4 to enable accurate selection of CRISPR transcripts while avoiding spurious, off-target RNA binding and cleavage.
    RNA 02/2012; 18(4):661-72. DOI:10.1261/rna.030882.111 · 4.62 Impact Factor
  • Blake Wiedenheft, Samuel H Sternberg, Jennifer A Doudna
    [Show abstract] [Hide abstract]
    ABSTRACT: Clustered regularly interspaced short palindromic repeat (CRISPR) are essential components of nucleic-acid-based adaptive immune systems that are widespread in bacteria and archaea. Similar to RNA interference (RNAi) pathways in eukaryotes, CRISPR-mediated immune systems rely on small RNAs for sequence-specific detection and silencing of foreign nucleic acids, including viruses and plasmids. However, the mechanism of RNA-based bacterial immunity is distinct from RNAi. Understanding how small RNAs are used to find and destroy foreign nucleic acids will provide new insights into the diverse mechanisms of RNA-controlled genetic silencing systems.
    Nature 02/2012; 482(7385):331-8. DOI:10.1038/nature10886 · 42.35 Impact Factor
  • Biophysical Journal 01/2012; 102(3):69-. DOI:10.1016/j.bpj.2011.11.403 · 3.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The specialized ribonuclease Dicer plays a central role in eukaryotic gene expression by producing small regulatory RNAs-microRNAs (miRNAs) and short interfering RNAs (siRNAs)-from larger double-stranded RNA (dsRNA) substrates. Although Dicer will cleave both imperfectly base-paired hairpin structures (pre-miRNAs) and perfect duplexes (pre-siRNAs) in vitro, it has not been clear whether these are mechanistically equivalent substrates and how dsRNA binding proteins such as trans-activation response (TAR) RNA binding protein (TRBP) influence substrate selection and RNA processing efficiency. We show here that human Dicer is much faster at processing a pre-miRNA substrate compared to a pre-siRNA substrate under both single and multiple turnover conditions. Maximal cleavage rates (V(max)) calculated by Michaelis-Menten analysis differed by more than 100-fold under multiple turnover conditions. TRBP was found to enhance dicing of both substrates to similar extents, and this stimulation required the two N-terminal dsRNA binding domains of TRBP. These results demonstrate that multiple factors influence dicing kinetics. While TRBP stimulates dicing by enhancing the stability of Dicer-substrate complexes, Dicer itself generates product RNAs at rates determined at least in part by the structural properties of the substrate.
    Journal of Molecular Biology 10/2010; 404(3):392-402. DOI:10.1016/j.jmb.2010.09.030 · 3.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Single-molecule fluorescence resonance energy transfer (smFRET) has emerged as a powerful tool for mechanistic investigations of increasingly complex biochemical systems. Recently, we and others have successfully used smFRET to directly investigate the role of structural dynamics in the function and regulation of the cellular protein synthesis machinery. A significant challenge to these experiments, and to analogous experiments in similarly complex cellular machineries, is the need for specific and efficient fluorescent labeling of the biochemical system at locations that are both mechanistically informative and minimally perturbative to the biological activity. Here, we describe the development of a highly purified, fluorescently labeled in vitro translation system that we have successfully designed for smFRET studies of protein synthesis. The general approaches we outline should be amenable to single-molecule fluorescence studies of other complex biochemical systems.
    Methods in enzymology 01/2010; 472:221-59. DOI:10.1016/S0076-6879(10)72008-5 · 2.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Characterizing the structural dynamics of the translating ribosome remains a major goal in the study of protein synthesis. Deacylation of peptidyl-tRNA during translation elongation triggers fluctuations of the pretranslocation ribosomal complex between two global conformational states. Elongation factor G-mediated control of the resulting dynamic conformational equilibrium helps to coordinate ribosome and tRNA movements during elongation and is thus a crucial mechanistic feature of translation. Beyond elongation, deacylation of peptidyl-tRNA also occurs during translation termination, and this deacylated tRNA persists during ribosome recycling. Here we report that specific regulation of the analogous conformational equilibrium by translation release and ribosome recycling factors has a critical role in the termination and recycling mechanisms. Our results support the view that specific regulation of the global state of the ribosome is a fundamental characteristic of all translation factors and a unifying theme throughout protein synthesis.
    Nature Structural & Molecular Biology 09/2009; 16(8):861-8. DOI:10.1038/nsmb.1622 · 11.63 Impact Factor
  • Ruben L. Gonzalez Jr, Jingyi Fei, Samuel H. Sternberg
    Biophysical Journal 02/2009; 96(3). DOI:10.1016/j.bpj.2008.12.947 · 3.83 Impact Factor

Publication Stats

670 Citations
254.28 Total Impact Points

Institutions

  • 2010–2015
    • University of California, Berkeley
      • Department of Chemistry
      Berkeley, California, United States
  • 2012
    • Howard Hughes Medical Institute
      Ashburn, Virginia, United States
  • 2009–2012
    • Columbia University
      • Department of Chemistry
      New York, New York, United States