Rongcun Yang

Nankai University, T’ien-ching-shih, Tianjin Shi, China

Are you Rongcun Yang?

Claim your profile

Publications (26)146.24 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The members of a LRR family play crucial roles in the activation of innate and adaptive immune responses. We reported previously that LRRC33, a transmembrane protein of the LRR family, might potentially affect TLR-mediated activity. Here, we demonstrate that LRRC33 is a negative physiological regulator for multiple TLRs. Lrrc33(-/-) and Lrrc33(+/)(-) mice were more susceptible to TLR ligand challenges. The macrophages and DCs from Lrrc33(-)(/)(-) mice produced more proinflammatory cytokines than those of WT mice through increased activation of MAPK and NF-κB. Silencing LRRC33 also promoted multiple TLR-mediated activation in human moDCs. Notably, LRRC33 expression could be down-regulated by TLR ligands LPS, poly I:C, or PGN through H3K4me3 and H3K27me3 modification. In LPS-conditioned moDCs, reduced enrichment of H3K4me3 and increased H3K27me3 could be observed at the promoter region of LRRC33. Furthermore, silencing H3K4me3-associated factors MLL and RBBP5 not only decreased the enrichment of H3K4me3 but also down-regulated expression of LRRC33, whereas the expression of LRRC33 was up-regulated after silencing H3K27me3-associated factors EZH2 and EED. Thus, our results suggest that LRRC33 and TLRs may form a negative-feedback loop, which is important for the maintenance of immune homeostasis.
    Journal of leukocyte biology 02/2014; · 4.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The innate immune-dependent bactericidal effects are critical for preventing microbial colonization in the urinary system. However, the mechanisms involved in establishing innate immune responses in kidney are not completely understood. Here we describe the role of a novel member of the LRR (leucine-rich repeat) class of transmembrane proteins, LRRC19 (LRR-containing 19) in eliminating uropathogenic bacteria. LRRC19 is predominantly expressed in human and mouse kidney tubular epithelial cells and LRRC19-deficient mice are more susceptible to uropathogenic Escherichia coli (UPEC) infection than wild-type or TLR4 knockout mice. Recognition of UPEC by LRRC19 induces the production of cytokines, chemokines and antimicrobial substances through TRAF2- and TRAF6-mediated NF-κB and MAPK signalling pathways. Thus, LRRC19 may be a critical pathogen-recognition receptor in kidney mediating the elimination of UPEC infection.
    Nature Communications 01/2014; 5:4434. · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epigenetic modification plays a critical role in regulating gene expression. To understand how epigenetic modification alters miRNA expression in monocyte-derived dendritic cells (moDCs) in different environments, we analyzed the connections between H3K4me3 and H3K27me3 modification and the expression of miRNAs in LPS- and TGF-β-conditioned moDCs. In moDCs, H3K4me3 modification was strongly associated with the expression of activating miRNAs, whereas H3K27me3 was related to repressive miRNAs. The regulation of miRNA expression by H3K4me3 and H3K27me3 was further confirmed by silencing or inhibiting methyltransferases or methylation-associated factors in LPS- and TGF-β-conditioned moDCs. siRNAs targeting H3K4me3-associated mixed lineage leukemia (MLL) and retinoblastoma binding protein 5 (RBBP5) reduced H3K4me3 enrichment and downregulated miRNA expression; conversely, silencing H3K27me3-associated enhancer of zeste homolog 2 (EZH2) and embryonic ectoderm development (EED) genes upregulated the DC-associated miRNAs. However, LPS-mediated miRNAs were often associated with H3K4me3 redistribution from the transcription start site (TSS) to the miRNA-coding region. Silencing LPS-associated NF-κB p65 and CBP/p300 not only inhibited H3K4m3 redistribution but also reduced miRNA expression. LPS-upregulated RBBP4 and RBBP7, which are involved in chromatin remodeling, also affected the redistribution of H3K4me3 and reduced the expression of miRNAs. In LPS- and TGF-β-conditioned moDCs, miRNAs may be modulated not only by H3K4m3 and H3K27me3 modification but also by redistribution of H3K4me3 around the transcriptional start site of miRNAs. Thus, H3K4me3 and H3K27me3 epigenetic modification may play an important role in regulating DC differentiation and function in the presence of tumor or inflammatory environments.
    PLoS ONE 01/2014; 9(4):e90231. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Toll-like receptors (TLRs) are important initiators in innate immune responses against pathogenic microbes such as viruses, intracellular bacteria or parasites. Although the innate immune system is designed to fight infectious pathogens, excessive activation of TLR signaling may lead to unwarranted inflammation with hazardous outcomes. Mechanisms of restraining excessive inflammation and controlling homeostasis for innate immunity are the focus of intense study. Here we showed that LRRC33, a novel member of leucine-rich repeat (LRR) protein family, plays a critical role in desensitizing TLR signaling. LRRC33 is TLR homolog that contains 17 putative LRRs in the extracellular region but lacks a cytoplasmic Toll/IL-1 receptor (TIR) domain. Expression of LRRC33 appears to be ubiquitous with high level of expression found in bone marrow, thymus, liver, lung, intestine and spleen. The LRRs of LRRC33 is required for the interaction with TLR and its inhibitory effect on NF-κB and AP-1 activation as well as cytokine production. Our study sheds new insight into the TLR signaling and inflammatory response in development and human diseases.
    Biochemical and Biophysical Research Communications 03/2013; · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tumors use a wide array of immunosuppressive strategies, such as reducing the longevity and survival of dendritic cells (DCs), to diminish immune responses and limit the effect of immunotherapy. In this study, we found that tumors upregulate the expression of multiple microRNAs (miRNAs), such as miR-16-1, miR-22, miR-155, and miR-503. These tumor-associated miRNAs influenced the survival and longevity of DCs by affecting the expression of multiple molecules that are associated with apoptotic signaling pathways. Specifically, miR-22 targeted YWHAZ to interrupt the PI3K/Akt and MAPK signaling pathways, and miR-503 downregulated Bcl2 expression. The result of the increased expression of miR-22 and miR-503 in the tumor-associated DCs was their reduced survival and longevity. Thus, tumor-associated miRNAs can target multiple intracellular signaling molecules to cause the apoptosis of DCs in the tumor environment. Use of miR-22 and miR-503 as inhibitors may therefore represent a new strategy to improve DC-based immunotherapies against tumors.
    The Journal of Immunology 01/2013; · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Myeloid-derived suppressor cells (MDSCs) were one of the major components of the immune suppressive network. STAT3 has an important role in regulating the suppressive potential of MDSCs. In this study, we found that the expression of STAT3 could be modulated by both miR-17-5p and miR-20a. The transfection of miR-17-5p or miR-20a remarkably reduces the expression of reactive oxygen species and the production of H(2)O(2), which are regulated by STAT3. MDSCs transfected with miR-17-5p or miR-20a are less able to suppress Ag-specific CD4 and CD8 T cells. Importantly, both miR-17-5p and miR-20a alleviate the suppressive function of MDSCs in vivo. The expression of miR-17-5p and miR-20a in tumor-associated MDSCs was found to be lower than in Gr1(+)CD11b(+) cells isolated from the spleens of disease-free mice. Tumor-associated factor downregulates the expression of both miR-17-5p and miR-20a. The modulation of miR-17-5p and miR-20a expression may be important for the process by which patients with a tumor can overcome the immune tolerance mediated by MDSCs. Our results suggest that miR-17-5p and miR-20a could potentially be used for immunotherapy against diseases, especially cancer, by blocking STAT3 expression.
    The Journal of Immunology 03/2011; 186(8):4716-24. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A dual-targeting drug delivery and pH-sensitive controlled release system based on multi-functionalized graphene oxide (GO) was established in order to enhance the effect of targeted drug delivery and realize intelligently controlled release. A superparamagnetic GO–Fe3O4 nanohybrid was firstly prepared via a simple and effective chemical precipitation method. Then folic acid, a targeting agent toward some tumor cells, was conjugated onto Fe3O4nanoparticlesvia the chemical linkage with amino groups of the 3-aminopropyl triethoxysilane (APS) modified superparamagnetic GO–Fe3O4 nanohybrid, to give the multi-functionalized GO. Doxorubicin hydrochloride (Dox) as an anti-tumor drug model was loaded onto the surface of this multi-functionalized GO via π–π stacking. The drug loading capacity of this multi-functionalized GO is as high as 0.387 mg mg−1 and the drug release depends strongly on pH values. Cell uptake studies were carried out using fluorescein isothiocyanate labeled or Dox loaded multi-functionalized GO to evaluate their targeted delivery property and toxicity to tumor cells. The results show that this multi-functionalized GO has potential applications for targeted delivery and the controlled release of anticancer drugs.
    Journal of Materials Chemistry 02/2011; 21(10):3448-3454. · 5.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumor-associated factors are related to increased accumulation of CD11b(+) Gr1(+) myeloid-derived suppressor cells (MDSCs). However, the exact mechanism of how genetic factors control the expansion of MDSCs in tumor-bearing hosts remains elusive. Herein, we found that tumor-associated MDSCs and their subsets, mononuclear MDSCs and polymorphonuclear MDSCs, have decreased expression of miR-223 when compared to CD11b(+) Gr1(+) cells from the spleen of disease-free mice. With the differentiation of CD11b(+) Gr1(+) MDSCs from bone marrow cells (BMCs) upon exposure to tumor-associated factors, the expression of both pri-miR-223 and mature miR-223 was downregulated, indicating that the expression of miR-223 could be regulated by tumor-associated factors. Interestingly, miR-223 remarkably inhibits differentiation of BMCs into CD11b(+) Gr1(+) MDSCs in the presence of tumor-associated factors by targeting myocyte enhancer factor 2C (MEF2C). Using reconstituted s.c. tumor models, miR-223 also suppresses accumulation of CD11b(+) Gr1(+) MDSCs, whereas its targeting molecule MEF2C increases the number of MDSCs. Tumor growth is slower in mice infused by miR223-engineered BMCs than in mice infused with control transfected BMCs. As miR-223 and its target molecule MEF2C are highly conserved between mice and humans, the modulation of miR-223 in tumor-induced CD11b(+) Gr1(+) MDSCs may exert an important role in controlling the increased accumulation of CD11b(+) Gr1(+) MDSCs in patients with tumor.
    International Journal of Cancer 01/2011; 129(11):2662-73. · 6.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumor-associated dendritic cells (DCs) often induce T cell anergy or deletion and regulatory T cells instead of antitumor immunity. Although many tumor-associated Ags have been found, there is still no effective vaccine for cancer. Thus, novel rational strategies to enhance the immunogenicity of cancer-specific Ags are needed. Chromosome 1 open reading frame 190 (c1orf190), a gene that encodes a 239-aa hypothetical protein and contains multiple kinase phosphorylation sites, has a wide relationship with multiple signaling pathway molecules and can be regulated by multiple factors, such as TLR ligands. In this study, we demonstrate that c1orf190 can activate NF-κB, drive the production of cytokines, and promote the Ag-presenting function and the priming ability of DCs. Furthermore, c1orf190 can promote resistance of DCs to tumor-associated inhibition not only in the Ag-presenting function but also in the priming ability to induce Ag-specific T lymphocytes. Thus, c1orf190, an NF-κB activator, may be a candidate gene for regulating the function of DCs to resist tumor-associated factor-mediated dysfunction. We also found that c1orf190-mediated cytokine release is achieved by activating the canonical but not the noncanonical NF-κB pathway.
    The Journal of Immunology 11/2010; 185(11):6719-27. · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cell (DC) function is negatively affected by tumors and tumor-derived factors, but little is known about the underlying mechanisms. Here, we show that intracellular SOCS3 in DCs binds to pyruvate kinase type M2 (M2-PK), which plays a critical role in ATP production through glycolysis. The interaction of SOCS3 with M2-PK reduced ATP production and impaired DC-based immunotherapy against tumors. Thus, SOCS3, which has been shown to be upregulated by tumor-derived factors, interacts with M2-PK to decrease ATP production, causing DC dysfunction. These dysfunctional DCs have a reduced ability to present antigens. Alteration of DC metabolism mediated by SOCS3 represents a novel mechanism for DC dysfunction in the tumor microenvironment.
    Cancer Research 12/2009; 70(1):89-98. · 9.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mechanism by which c-myc expression in undifferentiated cells rapidly declines following induction of differentiation is poorly characterized. We demonstrate here that MyD88, which can activate NF-kappaB and MAPK, also suppresses c-myc activity and expression. The aa 28-67 domain, a highly conserved region within MyD88, plays a critical role in the MyD88-mediated inhibition. Indeed, deletion of the aa 28-67 domain (MyD88 Delta 28-67) or mutation of the highly conserved amino acid residue phenylalanine (aa 36) to aspartic acid (MyD88 Delta F36D) significantly promoted c-myc activity and expression. Additionally, we found that MyD88 Delta 28-67-mediated c-myc activity and expression could be abrogated using PI3K inhibitor, suggesting that the PI3K/Akt signaling pathway may be involved in MyD88-mediated suppression of c-myc. Compared to MyD88-transduced DCs, MyD88 Delta 28-67- and MyD88 Delta F36D-transduced DCs derived from MyD88-/- bone marrow cells had lower antigen-presenting ability. Thus, MyD88 induces the differentiation and maturation of DCs not only by activating NF-kappaB and MAPK but also via suppressing c-myc activity and expression.
    Clinical Immunology 10/2009; 133(3):324-32. · 3.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have identified a new functional transmembrane receptor, LRRC19 (leucine-rich repeat containing 19), that belongs to the LRR protein family. LRRC19's central core has four analogous LRR repeating modules in a juxtaposed array and a casein kinase (CK2) phosphorylation site in the cytoplasmic domain. LRRC19 mRNA was found in the kidney, spleen and intestine of adult mice using both RT-PCR and in situ hybridization. LRRC19 does not contain a cytoplasmic Toll/IL-1 receptor (TIR) domain but was able to activate NF-kappaB and induce production of proinflammatory cytokines. LRRC19 shares a close evolutionary relationship with multiple Toll-like receptors (TLRs), especially TLR3. Importantly, the TLR3 ligand, as well as other TLR ligands, significantly promoted the expression of proinflammatory cytokines and the activation of NF-kappaB by LRRC19. Thus, LRRC19 may play an important role in inducing innate immune responses in certain tissues such as the kidney.
    Biochemical and Biophysical Research Communications 09/2009; 388(3):543-8. · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Suppressor of cytokine signaling 3 (SOCS3) expression in bone marrow cells (BMC) was up-regulated upon exposure to interleukin 6, lipopolysaccharide, or tumor-associated factors. But, how the up-regulated SOCS3 affects differentiation of BMCs is incompletely characterized. Here, we showed that SOCS3 promoted BMCs to intently differentiate into CD8 T cells. Importantly, lung can be as one athymus tissue for the BMCs to differentiate into CD8(+) T cells. Notch1 plays a critical role in the differentiation from SOCS3-transfected BMCs to CD8(+) T cells. We conclude that the up-regulated SOCS3 in some pathologic conditions, such as tumor and inflammation, might promote BMCs to differentiate into CD8(+) T lymphocytes in lung tissue via up-regulating Notch1 expression. This may represent a new mechanism against diseases such as tumor.
    Cancer Research 03/2009; 69(4):1578-86. · 9.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An elevated number of Gr-1(+)CD11b(+) myeloid-derived suppression cells (MDSCs) has been described in mice and human bearing tumor and associated with immune suppression. Arginase I production by MDSCs in the tumor environment may be a central mechanism for immunosuppression and tumor evasion. In this study and before, we found that Gr-1(+)CD11b(+) MDSCs from ascites and spleen of mice bearing ovarian 18D carcinoma express a high level of PD-1, CTLA-4, B7-H1 and CD80 while other co-stimulatory molecules, namely CD40, B7-DC and CD86 are not detected. Further studies showed that PD-1 and CTLA-4 on the Gr-1(+)CD11b(+) MDSCs regulated the activity and expression of arginase I. The blockage and silencing of PD-1, CTLA-4 or both PD-1 and CTLA4 molecules could significantly reduce arginase I activity and expression induced with tumor-associated factor. Similar results were also observed while their ligands B7-H1 and/or CD80 were blocked or silenced. Furthermore, CD80 deficiency also decreased the arginase I expression and activity. Antibody blockade or silencing of PD-1, CTLA-4 or both reduced the suppressive potential of PD-1+CTLA-4+MDSCs. Blockade of PD-1, CTLA-4 or both also slowed tumor growth and improved the survival rate of tumor-bearing mice. Thus, there may exist a coinhibitory and costimulatory molecules-based immuno-regulating net among MDSCs.
    Cancer Immunology and Immunotherapy 11/2008; 58(5):687-97. · 3.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Myeloid-derived suppressor cells (MDSCs) accumulate in tumor-bearing hosts and are associated with immune suppression. Here, we described high level of expression of B7-H1 (CD274), PD-1 (CD279) and CTLA4 (CD152) by Gr-1+CD11b+ MDSCs obtained from both ascites and spleens of mice bearing the 1D8 ovarian carcinoma, whereas B7-DC (CD273), CD40 and CD86 were absent. In contrast, B7-H1, PD-1 and CTLA-4 expression was not detected on Gr-1+CD11b+ cells from naive mice. Expression of B7-H1 by Gr-1+CD11b+ cells from naive mice could be induced by co-culture with 1D8 ovarian carcinoma cells. Gr-1+CD11b+ cells derived from 1D8 tumor-bearing mice markedly suppressed antigen-specific immune responses, whereas Gr-1+CD11b+ cells from naive mice did not. siRNA-mediated knockdown of B7-H1 in Gr-1+CD11b+ cells of 1D8 tumor-bearing mice alleviated suppression of antigen-specific immune responses. Suppression of antigen-specific immune responses via B7-H1 on Gr-1+CD11b+ myeloid cells was mediated by CD4+CD25+ Foxp3+ T regulatory cells and required PD-1. Antibody blockade of either B7-H1 or PD-1 retarded the growth of 1D8 tumor in mice. This suggests that expression of B7-H1 on Gr-1+CD11b+ myeloid cells triggered by the 1D8 mouse model of ovarian carcinoma suppresses antigen-specific immunity via interaction with PD-1 on CD4+CD25+ Foxp3+ regulatory T cells.
    Clinical Immunology 10/2008; · 3.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The suppressor of cytokine signaling (SOCS) family of negative regulatory proteins is up-regulated in response to several cytokines and pathogen-associated molecular patterns (PAMP) and suppresses cellular signaling responses by binding receptor phosphotyrosine residues. Exposure of bone marrow-derived dendritic cells (BMDC) to 1D8 cells, a murine model of ovarian carcinoma, suppresses their ability to express CD40 and stimulate antigen-specific responses in response to PAMPs and, in particular, to polyinosinic acid:poly-CMP (polyI:C) with the up-regulated SOCS3 transcript and protein levels. The ectopic expression of SOCS3 in both the macrophage cell line RAW264.7 and BMDCs decreased signaling in response to both polyI:C and IFNalpha. Further, knockdown of SOCS3 transcripts significantly enhanced the responses of RAW264.7 and BMDCs to both polyI:C and IFNalpha. Immunoprecipitation and pull-down studies show that SOCS3 binds to the IFNalpha receptor tyrosine kinase 2 (TYK2). Because polyI:C triggers autocrine IFNalpha signaling, binding of SOCS3 to TYK2 may thereby suppress the activation of BMDCs by polyI:C and IFNalpha. Thus, elevated levels of SOCS3 in tumor-associated DCs may potentially resist the signals induced by Toll-like receptor 3 ligands and type I IFN to decrease DC activation via binding with IFNalpha receptor TYK2.
    Cancer Research 08/2008; 68(13):5397-404. · 9.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multi-functionalized single walled carbon nanotubes (SWNTs) were prepared and applied as tumor cell targeting biological transporters. A positive charge was introduced on SWNTs to get high loading efficiency of fluorescein (FAM) labeled short double strands DNA (20 base pairs). The SWNTs were encapsulated with the folic acid modified phospholipids for active targeting into tumor cell. The tumor cell-targeting properties of these multi-functionalized SWNTs were investigated by active targeting into mouse ovarian surface epithelial cells. The experimental results show that these multi-functionalized SWNTs have good tumor cell targeting property.
    Journal of Nanoparticle Research 04/2008; 10(5):815-822. · 2.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To determine whether -CONH-(CH(2))(6)-NH(3)(+)Cl(-) functionalized single-walled carbon nanotubes (SWNT) carrying complexed small interfering RNA (siRNA) can enter into tumor cells, wherein they release the siRNA to silence the targeted gene. -CONH-(CH(2))(6)-NH(3)(+)Cl(-) was used to mediate the conjugation of telomerase reverse transcriptase (TERT) siRNA to SWNTs. The ability of TERT siRNA delivered via SWNT complexes to silence the expression of TERT was assessed by their effects on the proliferation and growth of tumor cells both in vitro and in mouse models. The functionalized SWNTs -CONH-(CH(2))(6)-NH(3)(+)Cl(-) could facilitate the coupling of siRNAs that specifically target murine TERT expression to form the mTERT siRNA:SWNT+ complex. These functionalized SWNTs rapidly entered three cultured murine tumor cell lines, suppressed mTERT expression, and produced growth arrest. Injection of mTERT siRNA:SWNT+ complexes into s.c. Lewis lung tumors reduced tumor growth. Furthermore, human TERT siRNA:SWNT+ complexes also suppressed the growth of human HeLa cells both in vitro and when injected into tumors in nude mice. -CONH-(CH(2))(6)-NH(3)(+)Cl(-) functionalized SWNTs carry complexed siRNA into tumor cells, wherein they release the siRNA from the nanotube sidewalls to silence the targeted gene. The -CONH-(CH(2))(6)-NH(3)(+)Cl(-) functionalized SWNTs may represent a new class of molecular transporters applicable for siRNA therapeutics.
    Clinical Cancer Research 09/2006; 12(16):4933-9. · 7.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An elevated number of Gr-1+CD11b+ myeloid cells has been described in mice bearing transplantable tumors, and has been associated with immune suppression. We examined the role of such myeloid suppressor cells in mice bearing the spontaneously transformed syngeneic mouse ovarian surface epithelial cell line, 1D8. We observed high levels of CD80 expression by Gr-1+CD11b+ cells from spleen, ascites, and tumor tissue of mice bearing 1D8 ovarian carcinoma, whereas CD40 and CD86 were absent. CD80 expression was not detected on Gr-1+CD11b+ cells from naïve mice. However, the expression of CD80 by Gr-1+CD11b+ cells from naïve mice was promoted by coculture with 1D8 cells. Because irradiated 1D8 cells, but not 1D8-conditioned medium, up-regulate CD80 expression by Gr-1+CD11b+ cells, this phenomenon likely requires direct interaction. Gr-1+CD11b+ cells derived from 1D8 tumor-bearing mice provided significant suppression of antigen-specific immune responses, but Gr-1+CD11b+ cells from naïve mice did not. Both short interfering RNA-mediated knockdown and genetic knockout of CD80 expression by Gr-1+CD11b+ cells of 1D8 tumor-bearing mice alleviated the suppression of antigen-specific immune responses. Suppression via CD80 on Gr-1+CD11b+ myeloid cells was mediated by CD4+CD25+ T regulatory cells and required CD152. CD80 knockout or antibody blockade of either CD80 or CD152 retarded the growth of 1D8 tumor in mice, suggesting that expression of CD80 on Gr-1+CD11b+ myeloid cells triggered by 1D8 ovarian carcinoma suppresses antigen-specific immunity via CD152 signaling and CD4+CD25+ T regulatory cells. Thus, CD80-dependent responses to myeloid suppressor cells may contribute to tumor tolerance and the progression of ovarian carcinoma.
    Cancer Research 08/2006; 66(13):6807-15. · 8.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The papillomavirus capsid mediates binding to the cell surface and passage of the virion to the perinuclear region during infection. To better understand how the virus traffics across the cell, we sought to identify cellular proteins that bind to the minor capsid protein L2. We have identified syntaxin 18 as a protein that interacts with bovine papillomavirus type 1 (BPV1) L2. Syntaxin 18 is a target membrane-associated soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (tSNARE) that resides in the endoplasmic reticulum (ER). The ectopic expression of FLAG-tagged syntaxin 18, which disrupts ER trafficking, blocked BPV1 pseudovirion infection. Furthermore, the expression of FLAG-syntaxin 18 prevented the passage of BPV1 pseudovirions to the perinuclear region that is consistent with the ER. Genetic studies identified a highly conserved L2 domain, DKILK, comprising residues 40 to 44 that mediated BPV1 trafficking through the ER during infection via an interaction with the tSNARE syntaxin 18. Mutations within the DKILK motif of L2 that did not significantly impact virion morphogenesis or binding at the cell surface prevented the L2 interaction with syntaxin 18 and disrupted BPV1 infection.
    Journal of Virology 07/2005; 79(11):6723-31. · 5.08 Impact Factor

Publication Stats

624 Citations
146.24 Total Impact Points

Institutions

  • 2006–2014
    • Nankai University
      • • Key Laboratory of Bioactive Materials
      • • Department of Immunology
      T’ien-ching-shih, Tianjin Shi, China
  • 2004–2005
    • Johns Hopkins University
      • Department of Pathology
      Baltimore, MD, United States
  • 2003–2005
    • Johns Hopkins Medicine
      • Department of Pathology
      Baltimore, MD, United States