Are you Robert L Vogel?

Claim your profile

Publications (18)74.41 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Glucocorticoids are used widely in the treatment of inflammatory diseases, but use is accompanied by a significant burden of adverse effects. It has been hypothesized that gene- and cell-specific regulation of the glucocorticoid receptor by small molecule ligands could be translated into a therapeutic with an improved risk-benefit profile. MK-5932 is a highly selective glucocorticoid receptor modulator that is anti-inflammatory in vivo with an improved profile on glucose metabolism: Bungard (2011) Bioorg. Med. Chem. 19, 7374-86. Here we describe the full biological profile of MK-5932. Cytokine production following lipopolysaccharide (LPS) challenge was blocked by MK-5932 in both rat and human whole blood. Oral administration reduced inflammatory cytokine levels in the serum of rats challenged with LPS. MK-5932 was anti-inflammatory in a rat contact dermatitis model, but was differentiated from 6-methylprednisolone by a lack of elevation of fasting insulin or glucose levels after 7 days of dosing, even at high exposure levels. In fact, animals in the vehicle group were consistently hyperglycemic at the end of the study, and MK-5932 normalized glucose levels in a dose-dependent manner. MK-5932 was also anti-inflammatory in the rat collagen-induced arthritis and adjuvant-induced arthritis models. In healthy dogs, oral administration of MK-5932 exerted acute pharmacodynamic effects with potency comparable to prednisone, but with important differences on neutrophil counts, again suggestive of a dissociated profile. Important gaps in our understanding of mechanism of action remain, but MK-5932 will be a useful tool in dissecting the mechanisms of glucose dysregulation by therapeutic glucocortiocids.
    European journal of pharmacology 12/2013; · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Selective androgen receptor modulators (SARMs) are androgen receptor (AR) ligands that induce anabolism while having reduced effects in reproductive tissues. In various experimental contexts SARMs fully activate, partially activate, or even antagonize the AR, but how these complex activities translate into tissue selectivity is not known. Here, we probed receptor function using >1000 synthetic AR ligands. These compounds produced a spectrum of activities in each assay ranging from 0 to 100% of maximal response. By testing different classes of compounds in ovariectomized rats, we established that ligands that transactivated a model promoter 40-80% of an agonist, recruited the coactivator GRIP-1 <15%, and stabilized the N-/C-terminal interdomain interaction <7% induced bone formation with reduced effects in the uterus and in sebaceous glands. Using these criteria, multiple SARMs were synthesized including MK-0773, a 4-aza-steroid that exhibited tissue selectivity in humans. Thus, AR activated to moderate levels due to reduced cofactor recruitment, and N-/C-terminal interactions produce a fully anabolic response, whereas more complete receptor activation is required for reproductive effects. This bimodal activation provides a molecular basis for the development of SARMs.
    Journal of Biological Chemistry 03/2010; 285(22):17054-64. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Androgens promote anabolism in the musculoskeletal system while generally repressing adiposity, leading to lean body composition. Circulating androgens decline with age, contributing to frailty, osteoporosis, and obesity; however, the mechanisms by which androgens modulate body composition are largely unknown. Here, we demonstrate that aged castrated rats develop increased fat mass, reduced muscle mass and strength, and lower bone mass. Treatment with testosterone or 5alpha-dihydrotestosterone (DHT) reverses the effects on muscle and adipose tissues while only aromatizable testosterone increased bone mass. During the first week, DHT transiently increased soleus muscle nuclear density and induced expression of IGF1 and its splice variant mechano growth factor (MGF) without early regulation of the myogenic factors MyoD, myogenin, monocyte nuclear factor, or myostatin. A genome-wide microarray screen was also performed to identify potential pro-myogenic genes that respond to androgen receptor activation in vivo within 24 h. Of 24 000 genes examined, 70 candidate genes were identified whose functions suggest initiation of remodeling and regeneration, including the type II muscle genes for myosin heavy chain type II and parvalbumin and the chemokine monocyte chemoattractant protein-1. Interestingly, Axin and Axin2, negative regulators of beta-catenin, were repressed, indicating modulation of the beta-catenin pathway. DHT increased total levels of beta-catenin protein, which accumulated in nuclei in vivo. Likewise, treatment of C2C12 myoblasts with both IGF1Ea and MGF C-terminal peptide increased nuclear beta-catenin in vitro. Thus, we propose that androgenic anabolism involves early downregulation of Axin and induction of IGF1, leading to nuclear accumulation of beta-catenin, a pro-myogenic, anti-adipogenic stem cell regulatory factor.
    Journal of Molecular Endocrinology 10/2009; 44(1):55-73. · 3.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Androgen replacement therapy is a promising strategy for the treatment of frailty; however, androgens pose risks for unwanted effects including virilization and hypertrophy of reproductive organs. Selective Androgen Receptor Modulators (SARMs) retain the anabolic properties of androgens in bone and muscle while having reduced effects in other tissues. We describe two structurally similar 4-aza-steroidal androgen receptor (AR) ligands, Cl-4AS-1, a full agonist, and TFM-4AS-1, which is a SARM. TFM-4AS-1 is a potent AR ligand (IC(50), 38 nm) that partially activates an AR-dependent MMTV promoter (55% of maximal response) while antagonizing the N-terminal/C-terminal interaction within AR that is required for full receptor activation. Microarray analyses of MDA-MB-453 cells show that whereas Cl-4AS-1 behaves like 5alpha-dihydrotestosterone (DHT), TFM-4AS-1 acts as a gene-selective agonist, inducing some genes as effectively as DHT and others to a lesser extent or not at all. This gene-selective agonism manifests as tissue-selectivity: in ovariectomized rats, Cl-4AS-1 mimics DHT while TFM-4AS-1 promotes the accrual of bone and muscle mass while having reduced effects on reproductive organs and sebaceous glands. Moreover, TFM-4AS-1 does not promote prostate growth and antagonizes DHT in seminal vesicles. To confirm that the biochemical properties of TFM-4AS-1 confer tissue selectivity, we identified a structurally unrelated compound, FTBU-1, with partial agonist activity coupled with antagonism of the N-terminal/C-terminal interaction and found that it also behaves as a SARM. TFM-4AS-1 and FTBU-1 represent two new classes of SARMs and will allow for comparative studies aimed at understanding the biophysical and physiological basis of tissue-selective effects of nuclear receptor ligands.
    Journal of Biological Chemistry 10/2009; 284(52):36367-76. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel series of 16-substituted-4-azasteroids has been identified as potential tissue-selective androgen receptor modulators. These ligands display potent hAR binding and agonist activity, low virilizing potential, and good pharmacokinetic profiles in dogs. On the basis of its in vitro profile, 21 was evaluated in the OVX and ORX rat models and exhibited an osteoanabolic, tissue-selective profile.
    Journal of Medicinal Chemistry 08/2009; 52(15):4578-81. · 5.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Signaling by androgens and interferons (IFN) plays an important role in prostate cancer initiation and progression. Using microarray analysis, we describe here a functional cross-talk between dihydrotestosterone and interferon signaling. Glutathione S-transferase pull-down and co-immunoprecipitation experiments reveal that the androgen receptor and the interferon-activated RNase L interact with each other in a ligand-dependent manner. Furthermore, overexpression of wild type RNase L confers IFN sensitivity to a dihydrotestosterone-inducible reporter gene, whereas R462Q-mutated RNase L does not. Based on our data we hypothesize that in 22RV1 cells, activated androgen receptor (AR) contributes to the insensitivity to IFN of the cell. Accordingly, we show that AR knockdown restores responsiveness to IFNgamma. Our findings support a model in which both the activation of AR and the down-regulation of IFN signaling can synergize to promote cell survival and suppress apoptosis. This model provides the molecular basis to understand how mutated RNase L can lead to early onset PCa and illustrates how inflammatory cytokines and nuclear hormone signaling contribute to tumor development.
    Journal of Biological Chemistry 12/2005; 280(47):38898-901. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear receptors are transcription factors that usually interact, in a ligand-dependent manner, with specific DNA sequences located within promoters of target genes. The nuclear receptors can also be controlled in a ligand-independent manner via the action of membrane receptors and cellular signaling pathways. 5-Tetradecyloxy-2-furancarboxylic acid (TOFA) was shown to stimulate transcription from the MMTV promoter via chimeric receptors that consist of the DNA binding domain of GR and the ligand binding regions of the PPARbeta or LXRbeta nuclear receptors (GR/PPARbeta and GR/LXRbeta). TOFA and hydroxycholesterols also modulate transcription from NF-kappaB- and AP-1-controlled reporter genes and induce neurite differentiation in PC12 cells. In CV-1 cells that express D(1) dopamine receptors, D(1) dopamine receptor stimulation was found to inhibit TOFA-stimulated transcription from the MMTV promoter that is under the control of chimeric GR/PPARbeta and GR/LXRbeta receptors. Treatment with the D(1) dopamine receptor antagonist, SCH23390, prevented dopamine-mediated suppression of transcription, and by itself increased transcription controlled by GR/LXRbeta. Furthermore, combined treatment of CV-1 cells with TOFA and SCH23390 increased transcription controlled by the GR/LXRbeta chimeric receptor synergistically. The significance of this in vitro synergy was demonstrated in vivo, by the observation that SCH23390 (but not haloperidol)-mediated catalepsy in rats was potentiated by TOFA, thus showing that an agent that mimics the in vitro activities of compounds that activate members of the LXR and PPAR receptor families can influence D1 dopamine receptor elicited responses.
    Pharmacology Biochemistry and Behavior 04/2005; 80(3):379-85. · 2.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Androgens play important endocrine roles in development and physiology. Here, we characterize activities of two "Andro" prohormones, androstenedione (A-dione) and 4-androsten-3beta,17beta-diol (A-diol) in MDA-MB-453 (MDA) and LNCaP cells. A-dione and A-diol, like cyproterone acetate, were partial agonists of transfected mouse mammary tumor virus (MMTV) and endogenous prostate-specific antigen (PSA) promoters. Different from bicalutamide but similar to CPA, both are inducers of LNCaP cell proliferation with only mild suppression of 5alpha-dihydrotestosterone (DHT)-enhanced cell growth. Like bicalutamide and cyproterone acetate, A-dione and A-diol significantly antagonized DHT/R1881-induced PSA expression by up to 30% in LNCaP cells. Meanwhile, in MDA cells, EC(50)s for the MMTV promoter were between 10 and 100nM. Co-factor studies showed GRIP1 as most active for endogenous androgen receptor (AR), increasing MMTV transcription by up to five-fold, without substantially altering EC(50)s of DHT, A-dione or A-diol. Consistent with their transcriptional activities, A-dione and A-diol bound full-length endogenous AR from MDA or LNCaP cells with affinities of 30-70nM, although binding to expressed ligand-binding domain (LBD) was >20-fold weaker. In contrast, DHT, R1881, and bicalutamide bound similarly to LBD or aporeceptor. Together, these data suggest that A-dione and A-diol are ligands for AR with partial agonist/antagonist activities in cell-based transcription assays. Binding affinities for both are most accurately assessed by AR aporeceptor complex. In addition to being testosterone precursors in vivo, either may impart its own transcriptional regulation of AR.
    The Journal of Steroid Biochemistry and Molecular Biology 09/2004; 91(4-5):247-57. · 3.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Develop a rat model for the evaluation of estrogenic agents on estrogen deficiency-induced changes in thermoregulation. OVX rats are impaired in thermoregulation which manifests itself as an elevation in basal tail skin temperature (TST) and are less able to respond to temperature changes than intact rats. Administration of estrogen subcutaneously to estrogen-depleted rats either as depot formulation, biodegradable pellets, or daily injections, suppressed the increased TST. OVX rats maintained on a diet devoid of phytoestrogens had a higher TST by several degrees than OVX rats fed normal chow, offering greater ability to test estrogenic agents on thermoregulation. Depletion of estrogen in intact rats via chronic administration of leuprolide acetate, a GnRH agonist, also increased TST, which was in turn suppressed by estrogen. In intact rats, tamoxifen exhibited estrogen antagonistic activity elevating TST, while in OVX rats, tamoxifen acted as an agonist by suppressing TST. OVX rats kept on a diet devoid of phytoestrogens are a sensitive model for estrogen-dependent thermoregulation.
    Maturitas 09/2004; 48(4):463-71. · 2.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The androgen receptor (AR) is a member of the steroid receptor superfamily that plays critical roles in the development and maintenance of the male reproductive system and in prostate cancer. Actions of AR are controlled by interaction with several classes of coregulators. In this study, we have identified LATS2/KPM as a novel AR-interacting protein. Human LATS1 and LATS2 are tumor suppressors that are homologs of Drosophila warts/lats. The interaction surface of LATS2 is mapped to the central region of the protein, whereas the AR ligand binding domain is sufficient for this interaction. LATS2 functions as a modulator of AR by inhibiting androgen-regulated gene expression. The mechanism of LATS2-mediated repression of AR activity appears to involve the inhibition of AR NH2- and COOH-terminal interaction. Chromatin immunoprecipitation assays in human prostate carcinoma cells reveal that LATS2 and AR are present in the protein complex that binds at the promoter and enhancer regions of prostate-specific antigen, and overexpression of LATS2 results in a reduction in androgen-induced expression of endogenous prostate-specific antigen mRNA. Immunohistochemistry shows that LATS2 and AR are localized within the prostate epithelium and that LATS2 expression is lower in human prostate tumor samples than in normal prostate. The results suggest that LATS2 may play a role in AR-mediated transcription and contribute to the development of prostate cancer.
    Molecular Endocrinology 09/2004; 18(8):2011-23. · 4.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: LXR and PPAR receptors belong to the nuclear receptor superfamily of transcriptional activating factors. Using ligand-dependent transcription assays, we found that 5-tetradecyloxy-2-furancarboxylic acid (TOFA) transactivates chimeric receptors composed of the glucocorticoid receptor DNA binding domain and the ligand binding regions of PPARalpha, PPARbeta (NUC-1) and LXRbeta (NER) receptors. In the same assays, ligands for PPARs (oleic acid, WY-14643 and L-631,033) and LXRs (hydroxycholesterols) maintain their respective receptor selectivity. TOFA and hydroxycholesterols also stimulate transcription from a minimal fibrinogen promoter that is under the control of AP-1 or NF-kappaB transcription factor binding sites. In addition to their effects on transcription, these LXRbeta activators induce neuronal differentiation in rat pheochromocytoma cells. TOFA and the natural LXR agonist, 22 (R)-hydroxycholesterol, stimulate neurite outgrowth in 55 and 28% of cells, respectively. No neurite outgrowth was induced by the related 22(S)-hydroxycholesterol, which does not activate the LXR family. These results suggest that the hydroxycholesterol signaling pathway has a complex effect on transcription that mediates the activity of TOFA and hydroxycholesterol on neuronal differentiation in pheochromocytoma cells.
    Molecular and Cellular Endocrinology 10/1999; 155(1-2):51-60. · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The glucocorticoid receptor (GR) and peroxisome proliferator-activated receptors (PPARs) play important roles in the differentiation of mesenchymal cells. Glucocorticoids acting via the GR promote osteoblastic differentiation of bone marrow stromal cells, whereas PPAR ligands induce these cells to become adipocytes. To explore potential interactions between PPAR and GR pathways in osteoblasts, we studied the interaction between PPAR subtype-selective ligands and dexamethasone (DEX) in a murine calvaria-derived osteoblastic cell line (MB 1.8) that expresses endogenous GR and PPARs. In ligand-dependent transcription assays, the PPARgamma-selective ligand TZD [(5-(4-N-methyl-N(2-pyridyl)amino)ethoxy)benzyl)thiazolidine-2,4-dione], a thiazolidinedione antidiabetic, enhanced the effect of DEX to stimulate transcription of a glucocorticoid-inducible reporter gene (mouse mammary tumor virus-luciferase). No effect was seen with PPARalpha- or hNUC1/PPARdelta-selective ligands. The GR antagonist RU-486 inhibited the DEX and TZD responses, suggesting that the effects were mediated through endogenous GR. TZD also enhanced glucocorticoid-mediated transcription in SaOS-2/B10 human osteosarcomatous cells, but not in CV-1 cells, even though both cell lines were transfected with GR plasmid and expressed significant levels of endogenous PPARgamma messenger RNA. In MB 1.8 cells, TZD decreased alkaline phosphatase activity and the expression of osteoblast-associated genes while it up-regulated the adipocyte fatty acid-binding protein. DEX counteracted the effects of TZD on alkaline phosphatase enzyme activity and osteoblastic gene expression, but enhanced the actions of TZD on adipocyte fatty acid-binding protein. Interestingly, TZD inhibited in vitro bone nodule formation and mineralization, and DEX counteracted this effect. Thus, depending on the promoter context, TZD and DEX can oppose or enhance each other's actions on gene transcription. Collectively, these results point to a complex interaction between PPAR and GR signaling pathways that regulates the effects of TZD and DEX on osteoblastic differentiation. The mechanism of this interaction is still under investigation, but might involve PPAR -dependent and -independent pathways. As thiazolidinediones represent an important new class of drugs, our findings also raise the need for further studies in bone.
    Endocrinology 08/1999; 140(7):3245-54. · 4.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Osteoblasts and adipocytes originate from common mesenchymal precursors. With aging, there is a decrease in osteoprogenitor cells that parallels an increase of adipocytes in bone marrow. We observed that rabbit serum (RS) induces adipocyte-like differentiation in human osteosarcoma SaOS-2/B10 and MG-63 cell lines, in rat ROS17/2.8 cells, and in mouse calvaria-derived osteoblastic MB1.8 cells, as evidenced by the accumulation of Oil Red O positive lipid vesicles and the decrease in alkaline phosphatase expression. Both SaOS-2/B10 and MG-63 cells, but not ROS17/2.8 nor MB1.8 cells, express significant levels of PPARgamma mRNA, a member of the peroxisome proliferator activated receptor (PPAR) family that has been implicated in the control of adipocyte differentiation. However, both ROS17/2.8 and MG-63 cells express significant levels of the adipocyte selective marker, aP2 fatty acid binding mRNA, which can be further increased by RS. These cell types express PPARdelta/NUC-1 but not PPARalpha, indicating that cells that do not express either PPARgamma or PPARalpha are capable of differentiating into adipocyte-like cells. Transfection experiments in COS cells showed that compared with fetal bovine serum (FBS), RS is rich in agents that stimulate PPAR-dependent transcription. The stimulatory activity was ethyl acetate extractable and was 35-fold more abundant in RS than in FBS. Purification and analysis revealed that the major components of this extract are free fatty acids. Furthermore, the same fatty acids, a mixture of palmitic, oleic, and linoleic acids, activate the PPARs and induce adipocyte-like differentiation of both ROS17/2.8 and SaOS-2/B10 cells. These findings suggest that fatty acids or their metabolites can initiate the switch from osteoblasts to adipocyte-like cells.
    Journal of Bone and Mineral Research 02/1998; 13(1):96-106. · 6.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mammalian peroxisome proliferator-activated receptor (PPAR) family consists of three different subtypes, PPARalpha, hNUC1/PPARdelta and PPARgamma. Selective agonists have been identified for PPARalpha and PPARgamma but not for hNUC1, and consequently little is known about the genes that are controlled by this receptor. Using ligand-dependent transcription assays in COS-7 cells, we screened a variety of PPAR activating agents to identify a selective activator of hNUC1. We found that the potent peroxisome proliferator, Wy-14643, and the PPARgamma-selective thiazolidinedione, BRL 49653, were poor activators of hNUC1 (EC50s of > 100 microM). Short chain fatty acids (FAs) appeared more selective for PPARalpha than for hNUC1, whereas the very long chain FA, erucic acid (C22:1) was more selective for hNUC1. Using erucic acid as a probe, we conducted a topological similarity search of the Merck Chemical Collection and identified a fatty acid-like compound, L-631,033 4-(2-acetyl-6-hydroxyundecyl) cinnamic acid, that was a selective activator of hNUC1 (EC50 of 2 microM), but was much less selective for PPARalpha or PPARgamma (EC50s of > 100 microM). Structure-function analysis of PPAR activation by L-631,033 structural analogues showed that receptor selectivity depends on the position of the carboxyl group relative to the phenyl ring on the molecule. Transfection experiments in several cell types: an osteoblastic cell line (MB 1.8), a mouse liver cell line (ML-457), rat aortic smooth muscle cells (RSMCs) and COS-7 cells revealed differences in the activation profile of specific ligands. The most notable differences were observed in RSMCs, where transactivation by L-631,033 and Wy-14643, but not by BRL 49653, was markedly reduced, and in MB 1.8 cells, where oleic acid failed to activate PPARs. These findings identify certain structural features in PPAR-activating agents that modulate PPAR activation, and suggest that as with other nuclear receptors, activation is cell-type specific.
    The Journal of Steroid Biochemistry and Molecular Biology 01/1997; 63(1-3):1-8. · 3.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The nuclear hormone receptors NUC-1 (PPAR delta) and PPAR alpha are members of the peroxisome proliferator-activated receptor (PPAR) family. The members of this receptor family are activated by agents that stimulate peroxisome proliferation, free fatty acids, prostaglandin 12 metabolites, and agents considered for the therapy of insulin-independent diabetes mellitus. To identify putative physiological agents that activate NUC-1, we tested the ability of acetone extracts of various rat tissues to activate the transcription of an MMTV-luciferase reporter gene, via a GR/NUC-1 hybrid receptor. GR/NUC-1 contains the ligand binding region of the NUC-1 receptor and the DNA binding domain of the glucocorticoid receptor. Using this assay, we found stimulatory activity in the pancreas, which upon purification and characterization was identified as methyl-palmitate, known to be enriched in pancreatic lipids. In addition, we determined that ethyl esters of palmitic and oleic acids are also potent activators of this receptor. Thus, fatty acid ester formation may control the cellular concentrations of fatty acids, and acyl-ester formation may play a role in the control of metabolic pathways and the activation of the PPAR.
    Lipids 12/1996; 31(11):1115-24. · 2.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Two forms of the transmembrane human protein tyrosine phosphatase (PTP sigma), generated by alternative splicing, were identified by cDNA cloning and Northern hybridization with selective cDNA probes. The larger form of PTP sigma is expressed in various human tissues, human osteosarcoma, and rat tibia. The hPTP sigma cDNA codes for a protein of 1911 amino acid residues and is composed of a cytoplasmic region with two PTP domains and an extracellular region that can be organized into three tandem repeats of immunoglobulin-like domains and eight tandem repeats of fibronectin type III-like domains. In the brain, the major transcript of PTP sigma is an alternatively spliced mRNA, in which the coding region for the fibronectin type III-like domains number four to seven are spliced out, thus coding for a protein of 1502 amino acid residues similar to the rat PTP sigma and rat PTP-NE3. Using in situ hybridization, we assigned hPTP sigma to chromosome 6, arm 6q and band 6q15. The bacterial-expressed hPTP sigma exhibits PTPase activity that was inhibited by orthovanadate (IC50 = 0.02 microM) and by two bisphosphonates used for the treatment of bone diseases, alendronate (ALN) (IC50 = 0.5 microM) and etidronate (IC50 = 0.2 microM). In quiescent calvaria osteoblasts, micromolar concentrations of vanadate, ALN and etidronate stimulate cellular proliferation. These findings show tissue-specific alternative splicing of PTP sigma and suggest that PTPs are putative targets of bisphosphonate action.
    Journal of Bone and Mineral Research 05/1996; 11(4):535-43. · 6.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: NER, a new member of the steroid hormone nuclear receptor (NR)-encoding gene family, was isolated from a human osteosarcoma SAOS/B10 cell line cDNA library. NER codes for a polypeptide of 461 amino acids which contains the conserved sequences of the DNA-binding and ligand-binding domains of typical steroid hormone NR. It has highest homology with the retinoic acid receptors: 55% at the DNA-binding domain and 38-40% at the ligand-binding domain. A single transcript of 2.3 kb was detected in all cells and tissues tested. Although no ligand was identified for NER-I, its wide distribution may indicate that this novel steroid hormone NR may play a basic role in cell function.
    Gene 10/1994; 147(2):273-6. · 2.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have identified a novel member of the steroid hormone receptor superfamily by cDNA cloning from a human osteosarcoma SAOS-2/B10 cell library. Sequence analysis predicts a protein of 441 amino acids, which includes the conserved amino acid residues characteristic of the DNA- and ligand-binding domains of nuclear receptors. Amino acid sequence alignment and transcriptional activation experiments revealed that the new protein is closely related to the mouse peroxisome proliferator activated receptor. The overall homology is 62%, and the highest similarity is seen in the DNA- and ligand-binding domains, 86% and 71%, respectively. Northern blot analysis showed that in mature rats, the receptor is highly expressed in heart, kidney, and lung as a transcript of approximately 3500 nucleotides. In human cells, the size of the mRNA is approximately 4000 nucleotides. Transcription assays using hybrid receptors consisting of the ligand-binding domain of the new protein and the DNA-binding domain of the glucocorticoid receptor showed weak stimulation by the peroxisome proliferator activator WY14643, suggesting a relationship to that receptor. Similar stimulation was observed with arachidonic and oleic acid (100-250 microM).
    Molecular Endocrinology 11/1992; 6(10):1634-41. · 4.75 Impact Factor