Rajesh Aggarwal

University of Maryland, Baltimore, Baltimore, Maryland, United States

Are you Rajesh Aggarwal?

Claim your profile

Publications (4)51.12 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Myocytes from the failing myocardium exhibit depressed and prolonged intracellular Ca(2+) concentration ([Ca(2+)](i)) transients that are, in part, responsible for contractile dysfunction and unstable repolarization. To better understand the molecular basis of the aberrant Ca(2+) handling in heart failure (HF), we studied the rabbit pacing tachycardia HF model. Induction of HF was associated with action potential (AP) duration prolongation that was especially pronounced at low stimulation frequencies. L-type calcium channel current (I(Ca,L)) density (-0.964 +/- 0.172 vs. -0.745 +/- 0.128 pA/pF at +10 mV) and Na(+)/Ca(2+) exchanger (NCX) currents (2.1 +/- 0.8 vs. 2.3 +/- 0.8 pA/pF at +30 mV) were not different in myocytes from control and failing hearts. The amplitude of peak [Ca(2+)](i) was depressed (at +10 mV, 0.72 +/- 0.07 and 0.56 +/- 0.04 microM in normal and failing hearts, respectively; P < 0.05), with slowed rates of decay and reduced Ca(2+) spark amplitudes (P < 0.0001) in myocytes isolated from failing vs. control hearts. Inhibition of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA)2a revealed a greater reliance on NCX to remove cytosolic Ca(2+) in myocytes isolated from failing vs. control hearts (P < 0.05). mRNA levels of the alpha(1C)-subunit, ryanodine receptor (RyR), and NCX were unchanged from controls, while SERCA2a and phospholamban (PLB) were significantly downregulated in failing vs. control hearts (P < 0.05). alpha(1C) protein levels were unchanged, RyR, SERCA2a, and PLB were significantly downregulated (P < 0.05), while NCX protein was significantly upregulated (P < 0.05). These results support a prominent role for the sarcoplasmic reticulum (SR) in the pathogenesis of HF, in which abnormal SR Ca(2+) uptake and release synergistically contribute to the depressed [Ca(2+)](i) and the altered AP profile phenotype.
    AJP Heart and Circulatory Physiology 03/2007; 292(3):H1607-18. DOI:10.1152/ajpheart.00525.2006 · 4.01 Impact Factor
  • Science 04/1999; DOI:10.1126/science.284.5415.711a · 31.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the cellular mechanisms for altered Ca2+ homeostasis and contractility in cardiac hypertrophy, we measured whole-cell L-type Ca2+ currents (ICa,L), whole-cell Ca2+ transients ([Ca2+]i), and Ca2+ sparks in ventricular cells from 6-month-old spontaneously hypertensive rats (SHRs) and from age- and sex-matched Wistar-Kyoto and Sprague-Dawley control rats. By echocardiography, SHR hearts had cardiac hypertrophy and enhanced contractility (increased fractional shortening) and no signs of heart failure. SHR cells had a voltage-dependent increase in peak [Ca2+]i amplitude (at 0 mV, 1330+/-62 nmol/L [SHRs] versus 836+/-48 nmol/L [controls], P<0.05) that was not associated with changes in ICa,L density or kinetics, resting [Ca2+]i, or Ca2+ content of the sarcoplasmic reticulum (SR). SHR cells had increased time of relaxation. Ca2+ sparks from SHR cells had larger average amplitudes (173+/-192 nmol/L [SHRs] versus 109+/-64 nmol/L [control]; P<0.05), which was due to redistribution of Ca2+ sparks to a larger amplitude population. This change in Ca2+ spark amplitude distribution was not associated with any change in the density of ryanodine receptors, calsequestrin, junctin, triadin 1, Ca2+-ATPase, or phospholamban. Therefore, SHRs with cardiac hypertrophy have increased contractility, [Ca2+]i amplitude, time to relaxation, and average Ca2+ spark amplitude ("big sparks"). Importantly, big sparks occurred without alteration in the trigger for SR Ca2+ release (ICa,L), SR Ca2+ content, or the expression of several SR Ca2+-cycling proteins. Thus, cardiac hypertrophy in SHRs is linked with an alteration in the coupling of Ca2+ entry through L-type Ca2+ channels and the release of Ca2+ from the SR, leading to big sparks and enhanced contractility. Alterations in the microdomain between L-type Ca2+ channels and SR Ca2+ release channels may underlie the changes in Ca2+ homeostasis observed in cardiac hypertrophy. Modulation of SR Ca2+ release may provide a new therapeutic strategy for cardiac hypertrophy and for its progression to heart failure and sudden death.
    Circulation Research 03/1999; 84(4):424-34. DOI:10.1161/01.RES.84.4.424 · 11.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 1. Whole-cell patch clamp currents from freshly isolated adult rat ventricular cells, recorded in external Ca2+ (Ca2+o) but no external Na+ (Na+o), displayed two inward current components: a smaller component that activated over more negative potentials and a larger component (L-type Ca2+ current) that activated at more positive potentials. The smaller component was not generated by Ca2+ channels. It was insensitive to 50 microM Ni2+ and 10 microM La3+ but suppressed by 10 microM tetrodotoxin (TTX). We refer to this component as ICa(TTX). 2. The conductance-voltage, g(V), relation in Ca2+o only was well described by a single Boltzmann function (half-maximum potential, V1/2, of -44.5; slope factor, k, of -4.49 mV, means of 3 cells). g(V) in Ca2+o plus Na+o was better described as the sum of two Boltzmann functions, one nearly identical to that in Ca2+o only (mean V1/2 of -45.1 and k of -3.90 mV), and one clearly distinct (mean V1/2 of -35.6 and k of -2.31 mV). Mean maximum conductance for ICa(TTX) channels increased 23.7% on adding 1 mM Na+o to 3 mM Ca2+o. ICa(TTX) channels are permeable to Na+ ions, insensitive to Ni2+ and La3+ and blocked by TTX. They are Na+ channels. 3. ICa(TTX) channels are distinct from classical cardiac Na+ channels. They activate and inactivate over a more negative range of potentials and have a slower time constant of inactivation than the classical Na+ channels. They are also distinct from yet another rat ventricular Na+ current component characterized by a much higher TTX sensitivity and by a persistent, non-fast-inactivating fraction. That ICa(TTX) channels activate over a more negative range of potentials than classical cardiac Na+ channels suggests that they may be critical for triggering the ventricular action potential and so of importance for cardiac arrhythmias.
    The Journal of Physiology 01/1998; 505 ( Pt 2)(2):353-69. DOI:10.1111/j.1469-7793.1997.353bb.x · 4.54 Impact Factor