Publications (2)11.07 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The mannitol cycle is a metabolic branch of the glycolytic pathway found in Eimeria tenella. In this paper, we describe the biosynthesis and consumption of mannitol during parasite development. Low micromolar levels of mannitol were detected in all of the asexual stages and mannitol production increased sharply during the sexual phase of the life cycle. Unsporulated oocysts had high mannitol content (300 mM or 25% of the oocyst mass). Mannitol-1-phosphate dehydrogenase (M1PDH), the first committed step of the mannitol cycle, was also elevated in sexual stages and this coincides with mannitol levels. Approximately 90% of the mannitol present in unsporulated oocysts was consumed in the first 15 hr of sporulation, and levels continued to drop until the sporulation process was complete at approximately 35 hr. Thus, mannitol appears to be the "fuel" for sporulation during the vegetative stage of the parasite life cycle. Evaluation of oocyst extracts from 6 additional Eimeria species for mannitol content and the presence of M1PDH indicated that the mannitol cycle was broadly present in this genus. This finding combined with the lack of mannitol metabolism in higher eukaryotes makes this pathway an attractive chemotherapeutic target.
    Journal of Parasitology 05/1999; 85(2):167-73. DOI:10.2307/3285614 · 1.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A novel fungal metabolite, apicidin [cyclo(N-O-methyl-L-tryptophanyl-L -isoleucinyl-D-pipecolinyl-L-2-amino-8-oxodecanoyl)], that exhibits potent, broad spectrum antiprotozoal activity in vitro against Apicomplexan parasites has been identified. It is also orally and parenterally active in vivo against Plasmodium berghei malaria in mice. Many Apicomplexan parasites cause serious, life-threatening human and animal diseases, such as malaria, cryptosporidiosis, toxoplasmosis, and coccidiosis, and new therapeutic agents are urgently needed. Apicidin's antiparasitic activity appears to be due to low nanomolar inhibition of Apicomplexan histone deacetylase (HDA), which induces hyperacetylation of histones in treated parasites. The acetylation-deacetylation of histones is a thought to play a central role in transcriptional control in eukaryotic cells. Other known HDA inhibitors were also evaluated and found to possess antiparasitic activity, suggesting that HDA is an attractive target for the development of novel antiparasitic agents.
    Proceedings of the National Academy of Sciences 12/1996; 93(23):13143-7. DOI:10.1073/pnas.93.23.13143 · 9.81 Impact Factor