R C Payne

Royal Veterinary College, London, ENG, United Kingdom

Are you R C Payne?

Claim your profile

Publications (18)35.36 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Selective breeding for performance has resulted in distinct breeds of horse, such as the Quarter Horse (bred for acceleration) and the Arab (bred for endurance). Rapid acceleration, seen during Quarter Horse racing, requires fast powerful muscular contraction and the generation of large joint torques, particularly by the hind limb muscles. This study compared hind limb moment arm lengths in the Quarter Horse and Arab. We hypothesized that Quarter Horse hind limb extensor muscles would have longer moment arms when compared to the Arab, conferring a greater potential for torque generation at the hip, stifle and tarsus during limb extension. Six Quarter Horse and six Arab hind limbs were dissected to determine muscle moment arm lengths for the following muscles: gluteus medius, biceps femoris, semitendinosus, vastus lateralis, gastrocnemius (medialis and lateralis) and tibialis cranialis. The moment arms of biceps femoris (acting at the hip) and gastrocnemius lateralis (acting at the stifle) were significantly longer in the Quarter Horse, although the length of the remaining muscle moment arms were similar in both breeds of horse. All the Quarter Horse muscles were capable of generating greater muscle moments owing to their greater physiological cross-sectional area (PCSA) and therefore greater isometric force potential, which suggests that PCSA is a better determinant of muscle torque than moment arm length in these two breeds of horse. With the exception of gastrocnemius and tibialis cranialis, the observed muscle fascicle length to moment arm ratio (MFL : MA ratio) was greater for the Arab horse muscles. It appears that the Arab muscles have the potential to operate at slower velocities of contraction and hence generate greater force outputs when compared to the Quarter Horse muscles working over a similar range of joint motion; this would indicate that Arab hind limb muscles are optimized to function at maximum economy rather than maximum power output.
    Journal of Anatomy 07/2010; 217(1):26-37. · 2.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We provide quantitative muscle-tendon architecture and geometry data for the racing greyhound thoracic limb. Muscle mass, belly length, fascicle lengths, pennation angles and moment arms were measured, as were tendon masses and lengths. Maximum isometric force and maximum power were estimated for muscles, and maximum stress and strain were estimated for tendons. Results are compared with other fast quadrupedal runners, and to previously published data in mixed-breed dogs. The implications of the functional adaptations of the greyhound thoracic limb for sprinting performance are discussed. The thoracic limb was found to benefit from a similar proportion of locomotor muscle mass to the pelvic limb, suggesting that it may be used to some extent in propulsion, or alternatively that stabilisation is very important in this animal. Extrinsic muscles, especially latissimus dorsi and pectoralis profundus, were predicted to be powerful and important for generating net positive work during accelerations. Proximal biarticular muscles show specialisation toward preventing collapse of the shoulder and elbow joints to enable strut-like limb function, or some form of dynamic control. Distal muscles did not appear specialised for elastic energy storage, a functional difference to pelvic limb muscles, and the equivalents in horse thoracic limbs. The greyhound thoracic limb appears to possess substantial differences from both that of more 'sub-maximal specialist' quadrupeds, and from the greyhound pelvic limb.
    Journal of Anatomy 11/2008; 213(4):373-82. · 2.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We provide quantitative anatomical data on the muscle-tendon architecture and geometry of the pelvic limb of an elite sprint athlete, the racing greyhound. Specifically, muscle masses, muscle lengths, fascicle lengths, pennation angles and muscle moment arms were measured. Maximum isometric force and power of muscles, the maximum muscle torque at joints and tendon stress and strain were estimated. We compare data with that published for a generalized breed of canid, and other cursorial mammals such as the horse and hare. The pelvic limb of the racing greyhound had a relatively large volume of hip extensor muscle, which is likely to be required for power production. Per unit body mass, some pelvic limb muscles were relatively larger than those in less specialized canines, and many hip extensor muscles had longer fascicle lengths. It was estimated that substantial extensor moments could be created about the tarsus and hip of the greyhound allowing high power output and potential for rapid acceleration. The racing greyhound hence possesses substantial specializations for enhanced sprint performance.
    Journal of Anatomy 10/2008; 213(4):361-72. · 2.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Quarter Horse (bred for acceleration) and the Arab (bred for endurance) are situated at either end of the equine athletic spectrum. Studies into the form and function of the leg muscles in human sprint and endurance runners have demonstrated that differences exist in their muscle architecture. It is not known whether similar differences exist in the horse. Six Quarter Horse and six Arab fresh hind limb cadavers were dissected to gain information on the muscle mass and architecture of the following muscles: gluteus medius; biceps femoris; semitendinosus; vastus lateralis; gastrocnemius; tibialis cranialis and extensor digitorum longus. Specifically, muscle mass, fascicle length and pennation angle were quantified and physiological cross-sectional area (PCSA) and maximum isometric force were estimated. The hind limb muscles of the Quarter Horse were of a significantly greater mass, but had similar fascicle lengths and pennation angles when compared with those of the Arab; this resulted in the Quarter Horse hind limb muscles having greater PCSAs and hence greater isometric force potential. This study suggests that Quarter Horses as a breed inherently possess large strong hind limb muscles, with the potential to accelerate their body mass more rapidly than those of the Arab.
    Journal of Anatomy 03/2008; 212(2):144-52. · 2.36 Impact Factor
  • Comparative Biochemistry and Physiology A-molecular & Integrative Physiology - COMP BIOCHEM PHYSIOL PT A. 01/2008; 150(3).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Muscle moment arms were measured for major muscles of the pelvic limb of the ostrich (Struthio camelus) in order to assess specific functional behaviour and to apply this to locomotor performance. Pelvic limbs of six juvenile ostriches were used for this study. The tendon travel technique was used to measure moment arms of 21 muscles at the hip, knee, ankle and metatarsophalangeal joints throughout the ranges of motion observed during level running. Six of the 21 muscles measured were found to have moment arms that did not change with joint angle, whilst the remainder all demonstrated angle-dependent changes for at least one of the joints crossed. Moment arm lengths tended to be longest for the large proximal muscles, whilst the largest relative changes were found for the moment arms of the distal muscles. For muscles where moment arm varied with joint angle: all hip muscles were found to have increasing moment arms with extension of the joint, knee flexors were found to have moment arms that increased with extension, knee extensor moment arms were found to increase with flexion and ankle extensor moment arms increased with extension. The greatest relative changes were observed in the flexors of the metatarsophalangeal joint, for which a three-fold increase in moment arm was observed from flexion to full extension. Changes in muscle moment arm through the range of motion studied appear to optimize muscle function during stance phase, increasing the effective mechanical advantage of these muscles.
    Journal of Anatomy 10/2007; 211(3):313-24. · 2.36 Impact Factor
  • Source
    S B Williams, R C Payne, A M Wilson
    [Show abstract] [Hide abstract]
    ABSTRACT: We provide quantitative anatomical data on the muscle-tendon architecture of the hare pelvic limb (specifically muscle mass, fascicle length, pennation angle, tendon mass and length). In addition, moment arms of major pelvic limb muscles were measured. Maximum isometric force and power of muscles, the moment of force about a joint, and tendon stress and strain were estimated. Data are compared with published data for other cursorial mammals such as the horse and dog, and a non-specialised Lagamorph, the rabbit. The pelvic limb of the hare was found to contain substantial amounts of hip extensor and adductor/abductor muscle volume, which is likely to be required for power production and stability during rapid turning. A proximal to distal reduction in muscle volume and fascicle length was also observed, as is the case in other cursorial quadrupeds, along with a reduction in distal limb mass via the replacement of muscle volume by long distal limb tendons, capable of storing large amounts of elastic energy. The majority of hare pelvic limb muscle moment arms varied with joint position, giving the hare the capacity to vary muscle function with limb posture and presumably different locomotor activities.
    Journal of Anatomy 05/2007; 210(4):472-90. · 2.36 Impact Factor
  • Source
    S B Williams, A M Wilson, R C Payne
    [Show abstract] [Hide abstract]
    ABSTRACT: We provide quantitative anatomical data on the muscle-tendon architecture of the hare thoracic limb (specifically muscle mass, fascicle length, pennation angle, tendon mass and length). In addition, moment arms of major thoracic limb muscles were measured. Maximum isometric force and power of muscles, the moment of force about a joint, and tendon stress and strain were estimated. Data are compared with those from other cursorial mammals. The thoracic limb of the hare consists predominantly of extrinsic musculature with long parallel fascicles, specialised for generating force over a large range. A large shoulder flexor/elbow extensor muscle mass is present, in particular Triceps brachii. The pennate nature of the long head of this muscle suggests it has an important role in stabilising the elbow joint during stance, whilst moment arm curves suggest that it may also play a role in initiating shoulder flexion. In addition, Supraspinatus and Infraspinatus are capable of generating high forces, potentially to stabilise the shoulder joint during the stance phase of locomotion. Supraspinatus may in addition play an important role in forelimb protraction. The Subscapularis muscle was capable of generating surprisingly high forces, suggesting that the hare must be able to withstand/produce high forces during activities that need medio-lateral stability, such as turning. Distally, tendons were relatively short, showing little potential for elastic energy storage when compared with both their pelvic limb counterparts and their equivalents in the horse thoracic limb. Thus, a 'stiffer' thoracic limb may be beneficial in terms of behaving like a strut, simply supporting and deflecting the body during high-speed running. This more distal/less proximal distribution of limb mass is also likely to be important in retaining the manipulative/adaptive/non-locomotor capabilities of the limb.
    Journal of Anatomy 04/2007; 210(4):491-505. · 2.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The functional anatomy of the pelvic limb of the ostrich (Struthio camelus) was investigated in order to assess musculoskeletal specialization related to locomotor performance. The pelvic limbs of ten ostriches were dissected and detailed measurements of all muscle tendon units of the pelvic limb were made, including muscle mass, muscle length, fascicle length, pennation angle, tendon mass and tendon length. From these measurements other muscle properties such as muscle volume, physiological cross-sectional area (PCSA), tendon cross-sectional area, maximum isometric muscle force and tendon stress were derived, using standard relationships and published muscle data. Larger muscles tended to be located more proximally and had longer fascicle lengths and lower pennation angles. This led to an expected proximal to distal reduction in total muscle mass. An exception to this trend was the gastrocnemius muscle, which was found to have the largest volume and PCSA and also had the highest capacity for both force and power production. Generally high-power muscles were located more proximally in the limb, while some small distal muscles (tibialis cranialis and flexor perforatus digiti III), with short fibres, were found to have very high force generation capacities. The greatest proportion of pelvic muscle volume was for the hip extensors, while the highest capacity for force generation was observed in the extensors of the ankle, many of which were also in series with long tendons and thus were functionally suited to elastic energy storage.
    Journal of Anatomy 01/2007; 209(6):765-79. · 2.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Quantitative, accurate data regarding the inertial properties of body segments are of paramount importance when developing musculo-skeletal locomotor models of living animals and, by inference, their ancestors. The limited number of available primate cadavers, and the destructive nature of the post-mortem, result in such data being very rare for primates. This study builds on the work of Crompton et al. (Am. J. Phys. Anthropol. 1996, 99, 547-570) and reports inertial properties of the body segments of gorillas, chimpanzees, orangutans and gibbons. Segment mass, centre of mass and the radius of gyration of five ape cadavers were measured using a complex-pendulum technique and compared with the results derived from external measurements of segment lengths and diameters on the same animals. With additional data from external measurements of eight more hominoid cadavers, and published data, intergeneric differences between the inertial properties and the distribution of mass between limb segments are analysed and related to the locomotor habits of the species. We found that segment inertial properties show extensive overlap between ape genera as a result of large interindividual variation. Segment mass distribution also overlaps between apes and humans, with the exception of the shank segment. However, owing to a different distribution of mass between the limb segments, the centre of mass of both the arms and the legs is located more distally in apes than in humans, and the natural pendular period of ape forelimbs is larger than that of the hindlimbs. This suggests that, in contrast to the limbs of cursorial mammals and cercopithecoid primates, hominoid limbs are not optimized for efficiency in quadrupedal walking, but rather reflect a compromise between various locomotor modes. Common chimpanzees may have secondarily evolved a more efficient quadrupedal gait.
    Journal of Anatomy 09/2006; 209(2):201-18. · 2.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Flexion/extension moment arms were obtained for the major muscles crossing the hip, knee and ankle joints in the orang-utan, gibbon, gorilla (Eastern and Western lowland) and bonobo. Moment arms varied with joint motion and were generally longer in proximal limb muscles than distal limb muscles. The shape of the moment arm curves (i.e. the plots of moment arm against joint angle) differed in different hindlimb muscles and in the same muscle in different subjects (both in the same and in different ape species). Most moment arms increased with increasing joint flexion, a finding which may be understood in the context of the employment of flexed postures by most non-human apes (except orang-utans) during both terrestrial and arboreal locomotion. When compared with humans, non-human great apes tended to have muscles better designed for moving the joints through large ranges. This was particularly true of the pedal digital flexors in orang-utans. In gibbons, the only lesser ape studied here, many of the moment arms measured were relatively short compared with those of great apes. This study was performed on a small sample of apes and thus differences noted here warrant further investigation in larger populations.
    Journal of Anatomy 07/2006; 208(6):725-42. · 2.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present quantitative data on the hindlimb musculature of Pan paniscus, Gorilla gorilla gorilla, Gorilla gorilla graueri, Pongo pygmaeus abelii and Hylobates lar and discuss the findings in relation to the locomotor habits of each. Muscle mass and fascicle length data were obtained for all major hindlimb muscles. Physiological cross-sectional area (PCSA) was estimated. Data were normalized assuming geometric similarity to allow for comparison of animals of different size/species. Muscle mass scaled closely to (body mass)(1.0) and fascicle length scaled closely to (body mass)(0.3) in most species. However, human hindlimb muscles were heavy and had short fascicles per unit body mass when compared with non-human apes. Gibbon hindlimb anatomy shared some features with human hindlimbs that were not observed in the non-human great apes: limb circumferences tapered from proximal-to-distal, fascicle lengths were short per unit body mass and tendons were relatively long. Non-human great ape hindlimb muscles were, by contrast, characterized by long fascicles arranged in parallel, with little/no tendon of insertion. Such an arrangement of muscle architecture would be useful for locomotion in a three dimensionally complex arboreal environment.
    Journal of Anatomy 07/2006; 208(6):709-24. · 2.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present quantitative data on the hindlimb musculature of Pan paniscus, Gorilla gorilla gorilla, Gorilla gorilla graueri, Pongo pygmaeus abelii and Hylobates lar and discuss the findings in relation to the locomotor habits of each. Muscle mass and fascicle length data were obtained for all major hindlimb muscles. Physiological cross-sectional area (PCSA) was estimated. Data were normalized assuming geometric similarity to allow for comparison of animals of different size/species. Muscle mass scaled closely to (body mass)1.0 and fascicle length scaled closely to (body mass)0.3 in most species. However, human hindlimb muscles were heavy and had short fascicles per unit body mass when compared with non-human apes. Gibbon hindlimb anatomy shared some features with human hindlimbs that were not observed in the non-human great apes: limb circumferences tapered from proximal-to-distal, fascicle lengths were short per unit body mass and tendons were relatively long. Non-human great ape hindlimb muscles were, by contrast, characterized by long fascicles arranged in parallel, with little/no tendon of insertion. Such an arrangement of muscle architecture would be useful for locomotion in a three dimensionally complex arboreal environment.
    Journal of Anatomy 05/2006; 208(6):709 - 724. · 2.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We provide quantitative anatomical data on the muscle-tendon units of the equine pelvic limb. Specifically, we recorded muscle mass, fascicle length, pennation angle, tendon mass and tendon rest length. Physiological cross sectional area was then determined and maximum isometric force estimated. There was proximal-to-distal reduction in muscle volume and fascicle length. Proximal limb tendons were few and, where present, were relatively short. By contrast, distal limb tendons were numerous and long in comparison to mean muscle fascicle length, increasing potential for elastic energy storage. When compared with published data on thoracic limb muscles, proximal pelvic limb muscles were larger in volume and had shorter fascicles. Distal limb muscle architecture was similar in thoracic and pelvic limbs with the exception of flexor digitorum lateralis (lateral head of the deep digital flexor), the architecture of which was similar to that of the pelvic and thoracic limb superficial digital flexors, suggesting a functional similarity.
    Journal of Anatomy 07/2005; 206(6):557-74. · 2.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study investigates the foot and ankle myology of gibbons and bonobos, and compares it with the human foot. Gibbons and bonobos are both highly arboreal species, yet they have a different locomotor behaviour. Gibbon locomotion is almost exclusively arboreal and is characterized by speed and mobility, whereas bonobo locomotion entails some terrestrial knuckle-walking and both mobility and stability are important. We examine if these differences in locomotion are reflected in their foot myology. Therefore, we have executed detailed dissections of the lower hind limb of two bonobo and three gibbon cadavers. We took several measurements on the isolated muscles (mass, length, physiological cross sectional area, etc.) and calculated the relative muscle masses and belly lengths of the major muscle groups to make interspecific comparisons. An extensive description of all foot and ankle muscles is given and differences between gibbons, bonobos and humans are discussed. No major differences were found between the foot and ankle musculature of both apes; however, marked differences were found between the ape and human foot. The human foot is specialized for solely one type of locomotion, whereas ape feet are extremely adaptable to a wide variety of locomotor modes. Apart from providing interesting anatomical data, this study can also be helpful for the interpretation of fossil (pre)hominids.
    Journal of Anatomy 06/2005; 206(5):453-76. · 2.36 Impact Factor
  • Source
    R C Payne, P Veenman, A M Wilson
    [Show abstract] [Hide abstract]
    ABSTRACT: Muscles have two major roles in locomotion: to generate force and to absorb/generate power (do work). Economical force generation is achieved by short-fibred pennate muscle while the maximum power output of a muscle is architecture independent. In this study we tested the hypothesis that there is an anatomical and structural separation between the force-generating anti-gravity muscles and the propulsive (limb/trunk moving) muscles of the equine forelimb. Muscle mass and fascicle length measurements were made on the thoracic limb extrinsic muscles of six fresh horse cadavers. Physiological cross-sectional area and maximum isometric force were then estimated. Maximum power was estimated from muscle volume and published contraction velocity data. The majority of extrinsic forelimb muscles were large with long fascicles arranged in parallel to the long axis of the muscle. Muscles arranged in this way are optimised for doing work. The architecture of serratus ventralis thoracis (SVT) was unique. It had short (48 +/- 17 mm) fascicles, arranged at about 45 degrees to the long axis of the muscle, which would suggest a force-generating, anti-gravity role. The muscle belly of SVT was sandwiched between two broad, thick sheets of aponeurosis. Hence, SVT could make a significant contribution to the overall elastic properties of the thoracic limb.
    Journal of Anatomy 03/2005; 206(2):193-204. · 2.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The two most popular current paradigms concerning the precursor of hominid bipedalism are the terrestrial-quadrupedal model of GEBO (1992, 1996) and the vertical climbing model of FLEAGLE et al. (1981). The former regards heel strike plantigrady and a lateral to medial transfer of pressure in the foot as synapomorph features of the African Apes; the second suggests that hip joint function during climbing by chimpanzees is so similar to that in human walking that vertical climbing may have been pre-adaptive for the acquisition of bipedalism. Neither set of functional hypotheses is sustained by studies of locomotor kinesiology. We propose an alternative model based on the locomotion of orang-utans, which derives the basic biomechanical adaptations of the human hip and knee from arboreal hand-assisted bipedalism in an orthograde common hominoid ancestor.
    Courier Forschungsinstitut Senckenberg. 01/2003; 243:135-146.
  • Source
    Rachel Payne
    [Show abstract] [Hide abstract]
    ABSTRACT: MOST UK veterinary students have attended selective/private schools situated in affluent areas and are supported by parents on relatively high incomes. With the aim of increasing the diversity of its graduates, the Royal Veterinary College created the first veterinary widening participation (‘Gateway’) programme in England specifically to target applicants from non-traditional, low income backgrounds. In this article, Rachel Payne explains why the programme — which has been running since September 2005 — came about, and how it works.

Publication Stats

331 Citations
35.36 Total Impact Points

Top Journals

Institutions

  • 2005–2010
    • Royal Veterinary College
      • Structure and Motion Laboratory
      London, ENG, United Kingdom
    • University of London
      • Royal Veterinary College
      Londinium, England, United Kingdom
  • 2006–2008
    • University of Liverpool
      • Department of Human Anatomy & Cell Biology
      Liverpool, England, United Kingdom